
Formal Verification for SystemC/C++ Designs

Vlada Kalinic, OneSpin: A Siemens Business

© Accellera Systems Initiative 1

Agenda

– Introductions

– Overview of HLS usage, current challenges, opportunities

– OneSpin – SystemC DV Inspect and Verify Overview

– Q&A

© Accellera Systems Initiative 2

IC Integrity
Functionally Correct, Safe, Secure, and Trusted SoCs/ASICs/FPGAs

Design Integration Implementation

IC Integrity

SoC/ASIC/FPGA Verification Flow

OneSpin: A Siemens

Business provides

certified IC Integrity

Verification Solutions

to develop functionally

correct, safe, secure,

and trusted integrated

circuits.

Functional

Correctness
Safety

Trust and

Security

© Accellera Systems Initiative 4

Leading-Edge Formal Technology
Targeting Critical Hardware Verification Challenges

Functional Correctness
Rigorous coverage-driven functional

verification from block to chip,

leveraging formal technology

Safety
Safety analysis and higher diagnostic

coverage to meet strict certification

requirements

Trust and Security
Automated detection of RTL Trojans

and hardware vulnerabilities to

adversary attacks

Design Exploration

Protocol Violations

Integrate Formal/Sim Coverage

End-to-End User Assertions

HLS/SystemC Verification

Synthesis/P&R Errors

FMEDA of Complex SoCs

Failure Mode Distribution

Avoid Excessive Fault Simulations

Measure Diagnostic Coverage

ISO 26262 Compliance

Tool Qualification

Denial of Service

Data Leakage

Privileges Escalation

Data Integrity/Confidentiality

Hardware Backdoors

Hardware Trojans

OneSpin 360® Formal Platform

Heterogeneous Computing

OneSpin Solutions and Services

Thorough verification of

complex SoC platforms

used for 5G wireless, IoT,

and AI applications

Automotive and Industrial
Systematic bug elimination

and metrics on proper

handling of random errors in

the field

RISC-V
Efficient and complete

verification, including

custom extensions.

Compliance to ISA.

RISC-V

© Accellera Systems Initiative 5

SystemC with HLS Typical Issues

Using SystemC for HLS Modeling creates new problems and opportunities
• Algorithm implementation issues in SystemC

• SystemC language related code problems and ambiguity in the code
• There are undefined operations in the SystemC Standard

• Functional Consistency Checking of SystemC vs. RTL

Imposing Hardware Constraints on C++

Floating Point Algorithmic
Design

Fixed Point
Implementation in C++

SystemC
HLS Model

Synthesized
RTL Model

HLS Design Flow

Algorithm Design Functional ComparisonCode Analysis

© Accellera Systems Initiative 6

The Standards Do Not Help

• IEEE 1666 SystemC Standard
– 25+ occurrences of “unspecified“
– 50+ occurrences of “undefined“
– 150+ occurrences of “implementation defined“

• Accellera Synthesizable Subset
– ~20 occurrences of “undefined“, “unspecified”,

“implementation defined“

– OneSpin supports C++ 14 version

C++ Not Built for Hardware Descriptions

© Accellera Systems Initiative 7

OneSpin: Advanced Verification for HLS

• Challenges

– Limited useful feedback from HLS for coding
style

– Certain coding mistakes can cause simulation
mismatches that are extremely difficult to debug

– Optimization loop is long and somewhat ad-hoc

– Garbage in, garbage out

HLS

Coding

High Level

Synthesis
High Level

Synthesis

RTL

Verification

D
e
b
u
g
 &

 O
p
ti
m

iz
e

Algorithmic

Modeling

Current HLS Flow

© Accellera Systems Initiative 8

OneSpin: Advanced Verification for HLS
• Opportunities to Improve Design Flow

HLS

Coding

High Level

Synthesis
High Level

Synthesis

RTL

Verification

D
e
b
u
g
 &

 O
p
ti
m

iz
e

HLS

Coding

High Level

Synthesis
High Level

Synthesis

RTL

Verification

D
e
b
u
g
 &

 O
p
ti
m

iz
e

OneSpin 360 DV

Verification

Formal Autochecks
Automated Apps
SVA / Assertions

– Early verification and bug detection
– Better SystemC verification

• Automated and exhaustive
• Formal checking – not simple linting
• Clearer messages & direction to improve

code
• Comprehensive coverage metrics

– Faster runtime and iteration loop
– Check over SystemC common issues on the original

SystemC code (as undefined operation in Standard)

Algorithmic

Modeling

Algorithmic

Modeling

😀

Adding

OneSpin

Current HLS Flow Improved HLS Flow

© Accellera Systems Initiative 9

Deploying the OneSpin Products
DV-Inspect & DV-Verify for SystemC & RTL

DV-Verify Apps
• Design Exploration

• UMR & X-Propagation

• Protocol Verification IP

• Scoreboard

UMR = Uninitialized Memory Read

DV-Verify Formal ABV
• SV-Assertions, C-Assert

• Cover Points

• Observation Coverage

Automatic Formal Analysis

Tool Guided Verification

Assertion Based Verification

Easy Adoption & Increasing Value

DV-Inspect

• Structural Analysis

• Linting

• Initialization & Reset

• Overflow and Array OOB

• Activation & Reachability

• Arithmetic Precision

• Race Conditions

© Accellera Systems Initiative 10

OneSpin 360 DV High-Level Verification

• Values (Pros over RTL verification)

– Eliminate design bugs before HLS
synthesis

– Start verification much earlier in the
process

– Reduce simulation effort in SystemC
and RTL

– Optimize HLS input code before
synthesis

– BothC++ or SystemC languages for HLS

Design Verification Solution for C++/SystemC HLS Code

OneSpin Checks

Lint Browser
Auto

Checks

Init

Init_check

Model building

array_index

no_return

div_zero

write_write

read_write

General

truncation

integer

fixed_overflow

shift

shift_negative

signal_domain

Stick

stick_check

Dead-Code Checks

dead_code_check

Assertion Checks

X-Propagation

Process_wri
te

Read_witho
ut_write

OneSpin 360 DV-Inspect for SystemC

© Accellera Systems Initiative 11

OneSpin Formal Inspection
SystemC Code Apps & Checks

• Automatic identification of SystemC problems and coding style issues

• No need for testbench writing

• Formal checks – not just linting

• Problems easily debugged prior to synthesis

Structure
(Easy Lint)

Safety Checks
(Assertion Synthesis)

Activation
(Coverage)

Mismatch/port
/wire

Runtime Errors
Sim-Synth

Issue
Safe Function

Dead code
checks

Signal trunc /
no sink

Array index Initialization
Arithmetic
overflow

Stuck signal
(toggle test)

Sensitivity list
issues

Function
without return

X-Propagation Redundant bits
FSM trans and

states

Unused signal /
param

Division by 0
Write-write

race
Arithmetic

shifts
MORE…

SystemC

Code

“Under-the-hood”

Assertion Synthesis

S
tr

u
c
tu

ra
l

A
n

a
ly

s
is

S
a

fe
ty

C
h
e

c
k
s

A
c
ti
v
a

ti
o

n

C
h
e

c
k
s

T
ra

c
e

 &

D
e
b

u
g

© Accellera Systems Initiative 12

SystemC Inspect Automated Checks

Tab Autocheck Explanation

Init init

Initialization checks are created for each non-redundant state signal and primary
output of the current unit. An initialization check tests whether the corresponding
signal is set to a uniquely determined value when applying the reset sequence of
the unit.

ModelBuilding array_index
An array index violation occurs if an array is accessed using an index which exceeds
the array bounds. Array index checks check for static and dynamic violations in all
array accesses occurring in the HDL source code.

ModelBuilding div_zero

Division-By-Zero checks are generated for all arithmetic divisions occurring in
Verilog. SystemC and VHDL source code, checking whether or not the divisor is
always different from zero. These checks are also generated in Verilog and SystemC
for modulo operations with a zero base and for pow operations on zero with a
negative exponent.

ModelBuilding no_return Function-Without-Return checks test whether each possible control path through a
function ends with a return statement.

General shift_negative
Checks whether a shift with a negative direction occurs. Cannot occur in
SystemVerilog, since there shift counts are always treated as unsigned integers.

ModelBuilding signal_domain Signal domain checks investigate whether state bits of the unit can take a value
other than zero or one, e.g. 'X' or 'Z'.

ModelBuilding write_write
In Verilog and SystemC designs, it is possible that write-write races occur among
different processes. In VHDL, a write-write race check is generated if a racing
condition for a shared variable may occur.

ModelBuilding read_write

In Verilog and SystemC designs, it is possible that read-write races occur among
different processes if blocking assignments are used. In VHDL, a read-write race
check is generated if a racing condition for a shared variable may occur.

Tab Autocheck Explanation

General fixed_overflow
Checks for overflows in fixed_float implementations in VHDL and SystemC.

General Integer

Integer checks are created for each signed or unsigned integer signal of the
current unit. An integer check tests whether there are redundant bits in the signal.

General
shift

A signal can be accidentally set to zero by logically shifting its value too many
times in the same direction. For each shift operation occurring in the source code,
a shift check is created, checking whether or not such unintended behavior may
occur.

General
process_write

In SystemC designs, it is possible that write-write race occur within same process.
For all possibly affected signals, a process-write check is generated, investigating
whether such incident can happen.

General read_without_write

In SystemC designs, it is possible that a read of a signal is performed before the
signal being written for the first time. For all possibly affected signals, a
read_without_write check is generated, investigating whether such incident can
happen.

General
truncation

If the result of an integral operation is used in a context, that does not match the
self-determined size or signedness of the operation, then relevant bits may be
lost.

Dead Code dead_code

A line of code is called dead code if it is not visited in any execution trace. Lines
can be unreachable, for example, if the condition of an enclosing control structure
never becomes true, thus always preventing it from being executed.

Stick stick Stick checks test the unit for constant bits in signals.

Assertion
Checks

x_checking_setup
x_checking

X-Propagation Analysis app provides a robust and effective circuit analysis that
highlights all the issues in a design that could lead to X state propagations without
reliance on simulation test stimulus.

© Accellera Systems Initiative 13

Design Exploration

• Design browser

• Full debugger

© Accellera Systems Initiative 14

Handling SystemC Initialization
Unpredictable Reset States

X

X

X

X

X

X

X

X

X

reset

0

1

X

0

0

X

1

1

X

Logic

1

0

0

1

1

X

0

0

X

Automatic variable initialization in SystemC

(due to C++ mother language)

• All “sc_” datatypes automatically initialized

to default value

However, synthesizable subset standard

states:

• Module constructor initializations ignored

• Reason: Reset behavior under user’s

control

Inevitable Sim/Synth mismatches hard to

debug using simulation

OneSpin 360 DV SystemC

✓ Checks which registers are initialized

✓ Check (intentionally) undefined reg effect

✓ Switch between sim & synth semantics

© Accellera Systems Initiative 15

Init checks
Autochecks categories

• A) Decription: Initialization checks are created for each non-redundant state signal and primary output of the current unit. An initialization check tests
whether the corresponding signal is set to a uniquely determined value when applying the reset sequence of the unit.

• B) Command to execute only these checks:

check_consistency –category init

• C) Example of the code:

data_t delay_line[TAPS];

...

/* Reset */

dout = 0;

dout_vl = false;

dout_ofl = false;

dout_ufl = false;

wptr = (TAPS);

buf_full = false;

buf_cnt = (TAPS-1);

Signal delay_line is not reset.

• D) Debug: Debugging is done by clicking "Go to Source" button

• E) Reason to fix: In case this issue persists, uninitialized values might cause 'X' values and to occur at some of the design's outputs.

© Accellera Systems Initiative 16

Undefined Value Propagation

• Are all registers initialized?
– Uninitialized registers sources of X instability

• Other sources of X
– Undefined operations

– Multiple drivers

• If Xs occur, will this have a bad effect?

• Solutions?
– SystemC Simulator has no notion of undefined

values or RTL semantics

– Formal can exhaustively analyze all conditions
under which an X can propagate

x x x x

1

0

OneSpin 360 DV SystemC

✓ Handles all sources of Xs

✓ Automated App to track X propagation

✓ Manual assertions (if Xs are allowed

temporarily)

No X-State in SystemC

© Accellera Systems Initiative 17

Undefined Operations
Example Array Out-Of-Bounds Access

OneSpin 360 DV-Inspect

✓ Exhaustive analysis

✓ Precise error location

✓ Easy debug

Simulation

• Array address maybe larger than number of elements but no
range checking

• Undefined behavior with diverse effects

• C++ checking tools slow and cumbersome

• Std::vector not possible

• Trivial bugs are hard to find and debug

sc_uint<8> mem[8][16];

：
if(x>=16) { x = 15 };

if(y>=8) { y = 7 };

mem[x][y] = ...;

• Simulation does not complain and runs fine!

• DV-Inspect reports range violation error.

sc_signal<sc_uint<10> > intArr[10];

:

int b = (large ? 10 : 5);

for(int i = 0; i <= b; ++i)

intArr[i].write(0);

• Simulation does not complain but may crash if b = 10!

• DV-Inspect reports range violation error with b = 10 if

‚large‘ is possible.

© Accellera Systems Initiative 18

Array index violation
Autochecks categories

• A) Decription:

An array index violation occurs if an array is accessed using an index which exceeds the array bounds. Array index checks check for static
and dynamic violations in all array accesses occurring in the HDL source code.

• B) Command to execute only these checks:

check_consistency –category array_index

• C) Example of the code:

const int TAPS=27;

data_t delay_line[TAPS];

delay_line[wptr] = din_reg;

Array delay_line' which contain 27 elements (0 to 26), and

it the code it accesses on 27th element.

• D) Debug:

Debugging is possible by clicking "Debug" button. The debugger points to line where the problem occurs. Example is in the next slide.

• E) Reason to fix:

Another one of many code issues in SystemC is the array out of bounds problem. In case this issue persists, “delay_line" could have some undesired values. Index-out-of-
bound can generate 'X' values or some unknown and incorrect design behavior. In hardware, a memory or register array may be addressed by another register or counter value
leading to an accidental value . Again this can be hard to track in SystemC using a simulator. But formal is ideal of quickly identifying these problems, however the code structure
appears that creates the issue.

© Accellera Systems Initiative 19

Array index violation - Debug
Autochecks categories

• Reason of the violation: In this case, it is signal a "delay_line". Double-click on this signal to be pointed to its declaration (it is an array of 5
elements). Go back to where "delay_line" is assigned. Notice that it contains index "wptr". If you double-click on this index and follow its driver,
you will be pointed to its reset value (in this case wptr=TAPS)

© Accellera Systems Initiative 20

SystemC Race Conditions

• SystemC simulation is sequential

• Standard forces simulators to execute
threads sequentially

• No HDL-style “non-blocking” assignment

• Hardware is concurrent

• RTL processes work in parallel

• Synthesis result is parallel

• HLS requires careful management of
concurrent access to shared memories

Simulation vs. Synthesis Mismatch

Memory

Thread 1 Thread 2

How does the designer guarantee no conflict?

OneSpin 360 DV SystemC

✓ Implements synthesis semantics

✓ Detects data races reliably

© Accellera Systems Initiative 21

Write/Write races
Model Building category

• A) Description: In SystemC designs, it is possible that write-write races occur among different processes. For all possibly affected signals, a
write-write race check is generated, investigating whether such incident can happen.

• B) Command to execute only these checks:

check_consistency –category write_write

• C) Example of the code:

void main () {

signalWithRace[0]=true;

}

void top () {

signalWithRace[0]=false;

}

• D) Debug: Debugging is done by clicking on Status field “fail” or in this example:
“ fail (1) " field. Counter-example waveform with active code viewer will be opened
in the new window. Example on the next slide

• E) Reason to fix: These checks can identify unintended races between
processes and incorrect design behavior. Also, it can have an affect on simulation
– synthesis mismatches.

© Accellera Systems Initiative 22

Fixed Point Arithmetic in SystemC

Data types sc_(u)fixed
• Sign + n-bit binary value

(like signed Verilog types)

• Additional m bits binary fraction

• Bit value: a[i]* 2^i
[fractional bits: 0.5, 0.25,…]

Hard to Get The Precision Right in Complex Datapath

1 0 -1 -2 -mn-1 2

s

Fully template-based classes

• Overloaded arithmetic operators, casts, constructors

• Can perform arithmetic on operands with different # of
digits before/after decimal point

Advantages

• Easy to write compact arithmetic

• Implementation complexity hidden from user

However

• Problematic to find “right” bit widths
▪ Too many bits: unnecessary complexity

▪ Too few bits: overflows and functional errors

• Hard to determine bit widths using simulation
▪ Too many possible combinations

© Accellera Systems Initiative 23

Fixed Point Precision App

OneSpin
Fixed Point

Formal
Checks

List of signals with
redundant bits

Simulation trace

showing overflow

SystemC
Block

Check for overflow
• Check all operations for signed/unsigned overflow

• Full automation, no need for stimulus

• Prove absence of overflows

• Show traces of overflow scenarios

Check for redundant bits

• Checks uppermost bits for redundancy

• Automated, no need for stimulus

• Reports fixed point signals with redundant bits

Available for sc_ standard types and HLS IP libraries

Automated Redundancy and Overflow Checks

sc_(u)int

sc_fixed

int

cynw_(u)int

© Accellera Systems Initiative 24

Integer (Redundant) checks
Autochecks categories
• A) Description:

Integer checks are created for each signed or unsigned signal of
the current unit. An integer check tests whether there are
redundant bits in the signal. For an unsigned integer, it tests the
most significant bits for constant. If the topmost bits are
constantly zero, they are redundant and are flagged. For a signed
integer, the tool tests whether the most significant bits always
equal the sign bit. If so, the redundant bits are flagged.

• B) Command to execute only these checks:

check_consistency –category integer

• C) Example of the code:

sc_uint<nbits<TAPS>::value> wptr;

This signal contains some leading redundant bits.

• D) Debug: Debugging is done by clicking "Go to Source"
button. The tool points you to the line where the signal is
declared.

• E) Reason to fix: If a signal contains redundant bits, it may
save area during HLS synthesis and make SystemC code
efficient if the user removes these redundant bits.

© Accellera Systems Initiative 25

Truncation (Overflow) check
General category
• A) Description: A truncation check tests whenever overflow can happen. If the result of an integral operation is used in a context, that

does not match the self-determined size or signedness of the operation, then relevant bits may be lost. The same issue may happen if
some integral value is assigned to a variable with different size or signedness. For all possibly affected expressions, a truncation check is
generated, investigating whether such incident can happen.

• B) Command to execute only these checks:

check_consistency –category truncation

• C) Example of the code:

sc_in<sc_uint<4> > in;

sc_uint<5> lvar;

lvar = in.read() * 10;

• D) Debug: Debugging is done by clicking on Status field “fail” or in this example:
“ fail (1) " field. Counter-example waveform with active code viewer will be opened
in the new window. Example on the next slide

• E) Reason to fix: If overflow happens, it can cause an incorrect value and
imprecise results. Fixing it before HLS can save a lot of effort to detect issue on
generated RTL code

© Accellera Systems Initiative 26

Toggle Checks

• “Stuck at” checks

• Easily determines which bits
are not used or not tested!

© Accellera Systems Initiative 27

DeadCode check
Dead-Code Checks category
• A) Description: A line of code is called dead code if it is not visited in any execution trace. Lines can be unreachable, for example, if the

condition of an enclosing control structure never becomes true, thus always preventing it from being executed. For each control structure, a
corresponding dead code check is generated, which checks reachability of the associated line or block of source code.

• B) Command to execute only these checks:

check_consistency –category dead_code

• C) Example of the code:

if (in.read() & !in.read()) {

tmp = 1;

}

• D) Debug: Debugging is done by clicking on Status field “fail” or in this example:
“ fail / unreachable " fields. Part of the code that is not reachable will be opened in
the new window. Example on the next slide

• E) Reason to fix: Pointing to unintentional design issues prior to HLS. Helping
HLS tools to improve synthesis runtime.

© Accellera Systems Initiative 28

Division by 0
Model Building category

• A) Description: Division-By-Zero checks are generated for all arithmetic divisions occurring in SystemC source code, checking whether the
divisor is always different from zero.

• B) Command to execute only these checks:

check_consistency –category div_zero

• C) Example of the code:

out = tmp / in.read();

• D) Debug: Debugging is done by clicking on Status field “fail” or in this example:
“ fail (1) " field. Counter-example waveform with active code viewer will be opened
in the new window. Example on the next slide

• E) Reason to fix: These checks can identify unintended division by zero and by
fixing them will prevent potential ‘X’ values to be propagated to output.

© Accellera Systems Initiative 29

Function without return
Model Building category
• A) Description: Function-Without-Return checks test whether each possible control path through a function ends with a return statement.

With SystemC standard it is possible to have function without return, but that can cause undefined return value and have wrong influence on
the design functionality

• B) Command to execute only these checks:

check_consistency –category no_return
• C) Example of the code:

int main () {

if (tmp)

out = 1;

}

• D) Debug: Debugging is done by clicking on Status field “fail” or in this example:
“ fail (1) " field. Counter-example waveform with active code viewer will be opened
in the new window. Example on the next slide

• E) Reason to fix: These checks can identify unintended function without return
and fixing them can prevent unknown values that can be assigned during function
call

© Accellera Systems Initiative 30

Resolution X Checks

• GUI ID: resolution_x

• Languages: SystemC

• Type: Safety

• Counter example: Yes

Checks if a resolved signal can become ‘X’

• resolution_x checks are generated for signals in systemc (including
each individual bit of it) with multiple drivers

• Implement X value in the SystemC Synthesizable Standard

© Accellera Systems Initiative 31

Shift Checks

• GUI ID: shift

• Languages: SystemC

• Type: Safety

• Counter example: Yes

• Command: check_consistency –category shift

Checks if a signal can become ‘0’ by shifting its value too many times

© Accellera Systems Initiative 32

Other Capabilities

© Accellera Systems Initiative 33

SystemC Property Checking Solution
Leveraging SVA on SystemC

Sequential SVA
on SystemC

SystemC in
debugging

environment

Functional
Specification

SVA

C++/SystemC

Code

Formal Tool

• Test specification elements against algorithm

• Consistent SystemVerilog assertions pre- and post-synthesis

• Check about Specific SystemC Standard implementatios

© Accellera Systems Initiative 34

Assertion Based Verification

• Distinction between assert/assume only important for formal

• Formal typically requires assumes in order to avoid unrealistic fails for
asserts

Assertion Classification

Type assert assume cover

Description Assertion Constraint Cover point

Purpose Monitor DUT behavior “Monitor” DUT inputs Collect coverage data

Simulation Eliminate ‘fail’ from TBs Achieve ‘pass’ in TBs

Formal Ensure absence of ‘fail’ by proving
assertion

Assume absence of ‘fail’ (never
show trace where assume fails)

Automatically find ‘pass’ or prove
absence of ‘pass’

© Accellera Systems Initiative 35

OneSpin with HLS Partnership
Design Verification Solution for HLS tools

• Cooperation with HLS teams

• Support of HLS libraries and

coding

• Provides independent check on
HLS flow

Use formal first! Improves verification flow! Gets working RTL faster!

High-Level
Synthesis

OneSpin 360 DV
Assertion-Based

Verification

C++/SystemC
Golden Model

OneSpin 360 DV
Automated Formal

Verification

SVA &
C Asserts

OneSpin 360 DV
Assertion-Based

Verification
Verilog / VHDL

RTL Model

DV-Inspect for
SystemC/C++

Specialized
Floating Point App

DV Standard
Formal Apps

More efficient analysis and debug of

C++/SystemC model prior high-level synthesis

Re-Use of assertions and apps on RTL for consistency

© Accellera Systems Initiative 36

OneSpin SystemC/C++ Solution

SystemC/C++ Hardware Verification

• Currently tools do not address verification challenges

• HLS driving need for pre-synthesis verification

Language and Algorithm Verification Needs

• SystemC artifacts cause problems downstream

• Algorithm verification can be accelerated with automation

OneSpin: Unique SystemC Formal Solution

• Automation to significantly improve SystemC testing

• SystemVerilog assertions for flow continuity

Enabling the HLS Flow

For more information,

please visit

www.onespin.com

© Accellera Systems Initiative 39

Thank You!

© Accellera Systems Initiative 40

Disclaimer
• © Siemens 2021

• Subject to changes and errors. The information given in this document
only contains general descriptions and/or performance features which
may not always specifically reflect those described, or which may
undergo modification in the course of further development of the
products. The requested performance features are binding only when
they are expressly agreed upon in the concluded contract.

• All product designations may be trademarks or other rights of
Siemens AG, its affiliated companies or other companies whose use by
third parties for their own purposes could violate the rights of the
respective owner.

© Accellera Systems Initiative Page 41

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by OneSpin: A Siemens Business to use this material in
developing all future revisions and editions of the resulting draft and
approved Accellera Systems Initiative SystemC standard, and in
derivative works based on the standard.

© Accellera Systems Initiative 42

