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About me

ÅNameΥ ¡ǘŜŦŀƴ-Tiberiu Petre

ÅOccupation: Hardware Verification Engineer,13 years experience

ÅExpertise: Functional Verification
ïSystemVerilog/UVM

ïSpecman-e/eRM/UVMe

ïSystemCςfor reference models

ÅOther interests:
ïFree and open source EDA tools

ïSimulation

ïMachine learning
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Dynamic thread creation

ÅThe creation of new simulation threads

ïafter elaboration has finished

ïat simulation times >= 0

ÅAlso known as "forking"
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Outline

ÅForking threads inSystemC ςwhat's currently supported?

ÅForking threads in SystemVerilog and Specman-e

ÅForking threads in SystemC just like in SystemVerilog and Specman-e 
using the sc_enhance library

ÅUsecases

ÅOther features of sc_enhance

ÅConclusions

ÅQnA
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Dynamic thread creation in SystemC ςsc_spawn

ÅSeeIEEE 1666-2011 Section 5.5
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SC_FORK ςSC_JOIN (LRM Section 5.5.7)
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SC_FORK ςSC_JOIN with lambdas (C++11 and later)
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SystemC ς2 types of fork

Å"join none" fork using sc_spawn

ïParent thread resumes immediately

Å"join all" fork using SC_FORK-SC_JOIN

ïParent resumes only when all forked threads have finished

© Accellera Systems Initiative 9



SystemVerilog and Specman-e ςmany types of fork

Åfork ςjoin / all of

Åfork ςjoin_any

Åfirst of

Åfork ςjoin_none / start

Åall of for each

Åfirst of for each
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fork - join / all of
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ÅAlready supported by SystemC as SC_FORK-SC_JOIN



fork ςjoin_any(SV)
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first of (e)
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first of (SV workaround)
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fork ςjoin_none/ start
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ÅAlready supported by SystemC as sc_spawn



Disadvantages of current SystemC support

ÅToo verbose (especially the classical C++ variant)
ïMust call sc_spawn everytime

ïIn the absence of modern C++ thread functions can't be coded inline (no 
lambdas)

ÅNo obvious support for join_any

ÅNo obvious support for "first of"

ÅNo obvious support for spawning multiple processes in a loop and 
joining them in various ways
ïalso a problem for SV

ïused to be a problem for Specman-e
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Introducing sc_enhance

Ågit clonehttps://github.com/verificationcontractor/sc_enhance.git

ÅHeader only library ( #include "sc_enhance.hpp" after <systemc>)

ÅUses Modern C++ ( -std=c++11 and later )

ÅA collection of macros and classes meant to simplify the SystemC 
language

ÅCan be added to future SystemC standards
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SC_FORK ςSC_JOIN
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ÅSimplified version of what is already supported (no need to call sc_spawn)



SC_FORK ςSC_JOIN
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SC_CFORK ςSC_CJOIN

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work
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SC_FORK ςSC_JOIN_ANY
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SC_FORK ςSC_JOIN_ANY
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SC_CFORK ςSC_CJOIN_ANY

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work
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SC_FORK ςSC_JOIN_FIRST
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SC_FORK ςSC_JOIN_FIRST
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SC_CFORK ςSC_CJOIN_FIRST

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work
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SC_FORK ςSC_JOIN_NONE
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SC_FORK ςSC_JOIN_NONE
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SC_CFORK ςSC_CJOIN_FIRST

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work
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Spawn threads in a loop (SV vs. e)
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Spawn threads in a loop (sc_enhance)
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SC_JOIN - usecases

ÅDrive/monitor multiple interfaces at the same time

ÅOne interface multiple data streams
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SC_JOIN_ANY - usecases

ÅLegal timeout

ÅHorserace simulation
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SC_JOIN_FIRST - usecases

ÅIllegal Timeout

ÅReset handling
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SC_JOIN_NONE - usecases

ÅAtypical join conditions
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Spawn threads in a loop - usecases

ÅParametrizable number of identical interfaces
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Other features in sc_enhance

ÅSimplified process 
declarations
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