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About me

• Name: Ștefan-Tiberiu Petre

• Occupation: Hardware Verification Engineer, 13 years experience

• Expertise: Functional Verification
– SystemVerilog/UVM

– Specman-e/eRM/UVMe

– SystemC – for reference models

• Other interests:
– Free and open source EDA tools

– Simulation

– Machine learning
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Dynamic thread creation

• The creation of new simulation threads

– after elaboration has finished

– at simulation times >= 0

• Also known as "forking"
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Outline

• Forking threads in SystemC – what's currently supported?

• Forking threads in SystemVerilog and Specman-e

• Forking threads in SystemC just like in SystemVerilog and Specman-e 
using the sc_enhance library

• Usecases

• Other features of sc_enhance

• Conclusions

• QnA
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Dynamic thread creation in SystemC – sc_spawn

• See IEEE 1666-2011 Section 5.5
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SC_FORK – SC_JOIN (LRM Section 5.5.7)
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SC_FORK – SC_JOIN with lambdas (C++11 and later)
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SystemC – 2 types of fork

• "join none" fork using sc_spawn

– Parent thread resumes immediately

• "join all" fork using SC_FORK-SC_JOIN

– Parent resumes only when all forked threads have finished
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SystemVerilog and Specman-e – many types of fork

• fork – join / all of

• fork – join_any

• first of

• fork – join_none / start

• all of for each

• first of for each
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fork - join / all of

© Accellera Systems Initiative 11

• Already supported by SystemC as SC_FORK-SC_JOIN



fork – join_any (SV)

© Accellera Systems Initiative 12



first of (e)
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first of (SV workaround)
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fork – join_none / start
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• Already supported by SystemC as sc_spawn



Disadvantages of current SystemC support

• Too verbose (especially the classical C++ variant)
– Must call sc_spawn everytime

– In the absence of modern C++ thread functions can't be coded inline (no 
lambdas)

• No obvious support for join_any

• No obvious support for "first of"

• No obvious support for spawning multiple processes in a loop and 
joining them in various ways
– also a problem for SV

– used to be a problem for Specman-e

© Accellera Systems Initiative 16



Introducing sc_enhance

• git clone https://github.com/verificationcontractor/sc_enhance.git

• Header only library ( #include "sc_enhance.hpp" after <systemc>)

• Uses Modern C++ ( -std=c++11 and later )

• A collection of macros and classes meant to simplify the SystemC 
language

• Can be added to future SystemC standards
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SC_FORK – SC_JOIN
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• Simplified version of what is already supported (no need to call sc_spawn)



SC_FORK – SC_JOIN
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SC_CFORK – SC_CJOIN

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work
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SC_FORK – SC_JOIN_ANY

© Accellera Systems Initiative 21



SC_FORK – SC_JOIN_ANY
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SC_CFORK – SC_CJOIN_ANY

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work
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SC_FORK – SC_JOIN_FIRST
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SC_FORK – SC_JOIN_FIRST
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SC_CFORK – SC_CJOIN_FIRST

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work
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SC_FORK – SC_JOIN_NONE
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SC_FORK – SC_JOIN_NONE
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SC_CFORK – SC_CJOIN_FIRST

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work
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Spawn threads in a loop (SV vs. e)
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Spawn threads in a loop (sc_enhance)
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SC_JOIN - usecases

• Drive/monitor multiple interfaces at the same time

• One interface multiple data streams
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SC_JOIN_ANY - usecases

• Legal timeout

• Horse race simulation
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SC_JOIN_FIRST - usecases

• Illegal Timeout

• Reset handling
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SC_JOIN_NONE - usecases

• Atypical join conditions
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Spawn threads in a loop - usecases

• Parametrizable number of identical interfaces
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Other features in sc_enhance

• Simplified process 
declarations
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Other features in sc_enhance (2)

• Simplified 
constructors
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Other features in sc_enhance (3)

• Method ports
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C++ Standard support

• Simplified forks: c++11, c++14, c++17

• Simplified process declaration: c++11, c++14, c++17

• Simplified constructors: c++11, c++14, c++17

• Simplified signal and instance declarations: c++11, c++14, c++17

• Simplified signal connections: c++11, c++14, c++17

• Method ports: c++14, c++17
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GDB breakpoints in lambdas

• Lambdas are inlined and optimized at compilation time

• Stepping through the lines in a lambda will have unpredictable effects

– e.g. jumps at the beginning of the lambda after each line and then to the next 
line

• g++ -g -Og -std=c++17 -lsystemc -o sim sim.cpp

• Use the -Og optimization flag to fix this
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Incorporation into the SystemC standard

• sc_enhance is made of 3 headers:

– sc_thread_process.h - modified version of file with same name in the SystemC source 
code

– sc_method_ports.hpp - method ports classes and macros

– sc_enhance.hpp - includes the other 2 headers + the rest of the classes and macros

• Incorporation into the SystemC library can be done in one of the following 
ways:

– As is + replacing sc_thread_process.h in SystemC

– Split into multiple headers and add them to the SystemC project

– Modify existing header files in SystemC by adding the extra classes and macros from 
sc_enhance
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Incorporation into the SystemC standard

• Sections in the standard that might require changes:

– 5.2 - add extra documentation for the simplified process declarations, simplified 
constructors and simplified signal/instance declarations and connections

– 5.5 - add extra documentation for the new types of SC_FORK

– Add an extra chapter for method ports

• Potential issues

– SC_FORK and SC_JOIN macros from sc_enhance override those from SystemC –
potential backward compatibility issues

– Method ports are not thread safe, must use mutexes
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Conclusions

• sc_enhance offers a more versatile way of forking threads by importing 
features from SV and e and even overcomming some limitations present in SV 
and e, thus making SystemC a more powerful language

• Using features from modern C++ (c++11 and later) SystemC code can become 
more concise, more readable and easier to write.

• sc_enhance can be incorporated into the SystemC library either "as is" or 
sligthly modified to ensure backward compatibility

• Simplified method declarations make it easier to write RTL code in SystemC

• Method ports make it easier to write SVPs and TLM models (both LT and AT)
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Thank You!
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