
How to fork threads in SystemC just like in
SystemVerilog and Specman-e

Stefan-Tiberiu Petre

© Accellera Systems Initiative 1

Independent verification consultant

Copyright Permission

ÅA non-exclusive, irrevocable, royalty-free copyright permission is
ƎǊŀƴǘŜŘ ōȅ Ϧ¡ǘŜŦŀƴ-Tiberiu PetrePFA" to use this material in developing
all future revisions and editions of the resulting draft and approved
Accellera Systems Initiative SystemC standard, and in derivative works
based on the standard.

© Accellera Systems Initiative 2

About me

ÅNameΥ ¡ǘŜŦŀƴ-Tiberiu Petre

ÅOccupation: Hardware Verification Engineer,13 years experience

ÅExpertise: Functional Verification
ïSystemVerilog/UVM

ïSpecman-e/eRM/UVMe

ïSystemCςfor reference models

ÅOther interests:
ïFree and open source EDA tools

ïSimulation

ïMachine learning

© Accellera Systems Initiative 3

Dynamic thread creation

ÅThe creation of new simulation threads

ïafter elaboration has finished

ïat simulation times >= 0

ÅAlso known as "forking"

© Accellera Systems Initiative 4

Outline

ÅForking threads inSystemC ςwhat's currently supported?

ÅForking threads in SystemVerilog and Specman-e

ÅForking threads in SystemC just like in SystemVerilog and Specman-e
using the sc_enhance library

ÅUsecases

ÅOther features of sc_enhance

ÅConclusions

ÅQnA

© Accellera Systems Initiative 5

Dynamic thread creation in SystemC ςsc_spawn

ÅSeeIEEE 1666-2011 Section 5.5

© Accellera Systems Initiative 6

SC_FORK ςSC_JOIN (LRM Section 5.5.7)

© Accellera Systems Initiative 7

SC_FORK ςSC_JOIN with lambdas (C++11 and later)

© Accellera Systems Initiative 8

SystemC ς2 types of fork

Å"join none" fork using sc_spawn

ïParent thread resumes immediately

Å"join all" fork using SC_FORK-SC_JOIN

ïParent resumes only when all forked threads have finished

© Accellera Systems Initiative 9

SystemVerilog and Specman-e ςmany types of fork

Åfork ςjoin / all of

Åfork ςjoin_any

Åfirst of

Åfork ςjoin_none / start

Åall of for each

Åfirst of for each

© Accellera Systems Initiative 10

fork - join / all of

© Accellera Systems Initiative 11

ÅAlready supported by SystemC as SC_FORK-SC_JOIN

fork ςjoin_any(SV)

© Accellera Systems Initiative 12

first of (e)

© Accellera Systems Initiative 13

first of (SV workaround)

© Accellera Systems Initiative 14

fork ςjoin_none/ start

© Accellera Systems Initiative 15

ÅAlready supported by SystemC as sc_spawn

Disadvantages of current SystemC support

ÅToo verbose (especially the classical C++ variant)
ïMust call sc_spawn everytime

ïIn the absence of modern C++ thread functions can't be coded inline (no
lambdas)

ÅNo obvious support for join_any

ÅNo obvious support for "first of"

ÅNo obvious support for spawning multiple processes in a loop and
joining them in various ways
ïalso a problem for SV

ïused to be a problem for Specman-e

© Accellera Systems Initiative 16

Introducing sc_enhance

Ågit clonehttps://github.com/verificationcontractor/sc_enhance.git

ÅHeader only library (#include "sc_enhance.hpp" after <systemc>)

ÅUses Modern C++ (-std=c++11 and later)

ÅA collection of macros and classes meant to simplify the SystemC
language

ÅCan be added to future SystemC standards

© Accellera Systems Initiative 17

SC_FORK ςSC_JOIN

© Accellera Systems Initiative 18

ÅSimplified version of what is already supported (no need to call sc_spawn)

SC_FORK ςSC_JOIN

© Accellera Systems Initiative 19

SC_CFORK ςSC_CJOIN

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 20

SC_FORK ςSC_JOIN_ANY

© Accellera Systems Initiative 21

SC_FORK ςSC_JOIN_ANY

© Accellera Systems Initiative 22

SC_CFORK ςSC_CJOIN_ANY

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 23

SC_FORK ςSC_JOIN_FIRST

© Accellera Systems Initiative 24

SC_FORK ςSC_JOIN_FIRST

© Accellera Systems Initiative 25

SC_CFORK ςSC_CJOIN_FIRST

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 26

SC_FORK ςSC_JOIN_NONE

© Accellera Systems Initiative 27

SC_FORK ςSC_JOIN_NONE

© Accellera Systems Initiative 28

SC_CFORK ςSC_CJOIN_FIRST

ÅClocked threads are also supported

ÅDon't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 29

Spawn threads in a loop (SV vs. e)

© Accellera Systems Initiative 30

Spawn threads in a loop (sc_enhance)

© Accellera Systems Initiative 31

SC_JOIN - usecases

ÅDrive/monitor multiple interfaces at the same time

ÅOne interface multiple data streams

© Accellera Systems Initiative 32

SC_JOIN_ANY - usecases

ÅLegal timeout

ÅHorserace simulation

© Accellera Systems Initiative 33

SC_JOIN_FIRST - usecases

ÅIllegal Timeout

ÅReset handling

© Accellera Systems Initiative 34

SC_JOIN_NONE - usecases

ÅAtypical join conditions

© Accellera Systems Initiative 35

Spawn threads in a loop - usecases

ÅParametrizable number of identical interfaces

© Accellera Systems Initiative 36

Other features in sc_enhance

ÅSimplified process
declarations

© Accellera Systems Initiative 37

