
How to fork threads in SystemC just like in
SystemVerilog and Specman-e

Stefan-Tiberiu Petre

© Accellera Systems Initiative 1

Independent verification consultant

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by "Ștefan-Tiberiu Petre PFA" to use this material in developing
all future revisions and editions of the resulting draft and approved
Accellera Systems Initiative SystemC standard, and in derivative works
based on the standard.

© Accellera Systems Initiative 2

About me

• Name: Ștefan-Tiberiu Petre

• Occupation: Hardware Verification Engineer, 13 years experience

• Expertise: Functional Verification
– SystemVerilog/UVM

– Specman-e/eRM/UVMe

– SystemC – for reference models

• Other interests:
– Free and open source EDA tools

– Simulation

– Machine learning

© Accellera Systems Initiative 3

Dynamic thread creation

• The creation of new simulation threads

– after elaboration has finished

– at simulation times >= 0

• Also known as "forking"

© Accellera Systems Initiative 4

Outline

• Forking threads in SystemC – what's currently supported?

• Forking threads in SystemVerilog and Specman-e

• Forking threads in SystemC just like in SystemVerilog and Specman-e
using the sc_enhance library

• Usecases

• Other features of sc_enhance

• Conclusions

• QnA

© Accellera Systems Initiative 5

Dynamic thread creation in SystemC – sc_spawn

• See IEEE 1666-2011 Section 5.5

© Accellera Systems Initiative 6

SC_FORK – SC_JOIN (LRM Section 5.5.7)

© Accellera Systems Initiative 7

SC_FORK – SC_JOIN with lambdas (C++11 and later)

© Accellera Systems Initiative 8

SystemC – 2 types of fork

• "join none" fork using sc_spawn

– Parent thread resumes immediately

• "join all" fork using SC_FORK-SC_JOIN

– Parent resumes only when all forked threads have finished

© Accellera Systems Initiative 9

SystemVerilog and Specman-e – many types of fork

• fork – join / all of

• fork – join_any

• first of

• fork – join_none / start

• all of for each

• first of for each

© Accellera Systems Initiative 10

fork - join / all of

© Accellera Systems Initiative 11

• Already supported by SystemC as SC_FORK-SC_JOIN

fork – join_any (SV)

© Accellera Systems Initiative 12

first of (e)

© Accellera Systems Initiative 13

first of (SV workaround)

© Accellera Systems Initiative 14

fork – join_none / start

© Accellera Systems Initiative 15

• Already supported by SystemC as sc_spawn

Disadvantages of current SystemC support

• Too verbose (especially the classical C++ variant)
– Must call sc_spawn everytime

– In the absence of modern C++ thread functions can't be coded inline (no
lambdas)

• No obvious support for join_any

• No obvious support for "first of"

• No obvious support for spawning multiple processes in a loop and
joining them in various ways
– also a problem for SV

– used to be a problem for Specman-e

© Accellera Systems Initiative 16

Introducing sc_enhance

• git clone https://github.com/verificationcontractor/sc_enhance.git

• Header only library (#include "sc_enhance.hpp" after <systemc>)

• Uses Modern C++ (-std=c++11 and later)

• A collection of macros and classes meant to simplify the SystemC
language

• Can be added to future SystemC standards

© Accellera Systems Initiative 17

SC_FORK – SC_JOIN

© Accellera Systems Initiative 18

• Simplified version of what is already supported (no need to call sc_spawn)

SC_FORK – SC_JOIN

© Accellera Systems Initiative 19

SC_CFORK – SC_CJOIN

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 20

SC_FORK – SC_JOIN_ANY

© Accellera Systems Initiative 21

SC_FORK – SC_JOIN_ANY

© Accellera Systems Initiative 22

SC_CFORK – SC_CJOIN_ANY

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 23

SC_FORK – SC_JOIN_FIRST

© Accellera Systems Initiative 24

SC_FORK – SC_JOIN_FIRST

© Accellera Systems Initiative 25

SC_CFORK – SC_CJOIN_FIRST

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 26

SC_FORK – SC_JOIN_NONE

© Accellera Systems Initiative 27

SC_FORK – SC_JOIN_NONE

© Accellera Systems Initiative 28

SC_CFORK – SC_CJOIN_FIRST

• Clocked threads are also supported

• Don't spawn clocked threads from unclocked ones, it won't work

© Accellera Systems Initiative 29

Spawn threads in a loop (SV vs. e)

© Accellera Systems Initiative 30

Spawn threads in a loop (sc_enhance)

© Accellera Systems Initiative 31

SC_JOIN - usecases

• Drive/monitor multiple interfaces at the same time

• One interface multiple data streams

© Accellera Systems Initiative 32

SC_JOIN_ANY - usecases

• Legal timeout

• Horse race simulation

© Accellera Systems Initiative 33

SC_JOIN_FIRST - usecases

• Illegal Timeout

• Reset handling

© Accellera Systems Initiative 34

SC_JOIN_NONE - usecases

• Atypical join conditions

© Accellera Systems Initiative 35

Spawn threads in a loop - usecases

• Parametrizable number of identical interfaces

© Accellera Systems Initiative 36

Other features in sc_enhance

• Simplified process
declarations

© Accellera Systems Initiative 37

Other features in sc_enhance (2)

• Simplified
constructors

© Accellera Systems Initiative 38

Other features in sc_enhance (3)

• Method ports

© Accellera Systems Initiative 39

C++ Standard support

• Simplified forks: c++11, c++14, c++17

• Simplified process declaration: c++11, c++14, c++17

• Simplified constructors: c++11, c++14, c++17

• Simplified signal and instance declarations: c++11, c++14, c++17

• Simplified signal connections: c++11, c++14, c++17

• Method ports: c++14, c++17

© Accellera Systems Initiative 40

GDB breakpoints in lambdas

• Lambdas are inlined and optimized at compilation time

• Stepping through the lines in a lambda will have unpredictable effects

– e.g. jumps at the beginning of the lambda after each line and then to the next
line

• g++ -g -Og -std=c++17 -lsystemc -o sim sim.cpp

• Use the -Og optimization flag to fix this

© Accellera Systems Initiative 41

Incorporation into the SystemC standard

• sc_enhance is made of 3 headers:

– sc_thread_process.h - modified version of file with same name in the SystemC source
code

– sc_method_ports.hpp - method ports classes and macros

– sc_enhance.hpp - includes the other 2 headers + the rest of the classes and macros

• Incorporation into the SystemC library can be done in one of the following
ways:

– As is + replacing sc_thread_process.h in SystemC

– Split into multiple headers and add them to the SystemC project

– Modify existing header files in SystemC by adding the extra classes and macros from
sc_enhance

© Accellera Systems Initiative 42

Incorporation into the SystemC standard

• Sections in the standard that might require changes:

– 5.2 - add extra documentation for the simplified process declarations, simplified
constructors and simplified signal/instance declarations and connections

– 5.5 - add extra documentation for the new types of SC_FORK

– Add an extra chapter for method ports

• Potential issues

– SC_FORK and SC_JOIN macros from sc_enhance override those from SystemC –
potential backward compatibility issues

– Method ports are not thread safe, must use mutexes

© Accellera Systems Initiative 43

Conclusions

• sc_enhance offers a more versatile way of forking threads by importing
features from SV and e and even overcomming some limitations present in SV
and e, thus making SystemC a more powerful language

• Using features from modern C++ (c++11 and later) SystemC code can become
more concise, more readable and easier to write.

• sc_enhance can be incorporated into the SystemC library either "as is" or
sligthly modified to ensure backward compatibility

• Simplified method declarations make it easier to write RTL code in SystemC

• Method ports make it easier to write SVPs and TLM models (both LT and AT)

© Accellera Systems Initiative 44

Bibliography

• IEEE 1666-2011 Standard for Standard SystemC Language Reference
Manual

• IEEE 1800-2017 Standard for SystemVerilog—Unified Hardware
Design, Specification, and Verification Language

• IEEE 1647-2016 Standard for the Functional Verification Language e

• https://sclive.wordpress.com/2008/01/10/systemc-tutorial-threads-
methods-and-sc_spawn/

• https://forums.accellera.org/topic/6211-how-can-i-implement-sc_fork-
join_any-sc_fork-join_none/

© Accellera Systems Initiative 45

https://sclive.wordpress.com/2008/01/10/systemc-tutorial-threads-methods-and-sc_spawn/
https://forums.accellera.org/topic/6211-how-can-i-implement-sc_fork-join_any-sc_fork-join_none/

Thank You!

© Accellera Systems Initiative 46

