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Background & Motivation

• About the author:
– Located @ Intel Eindhoven, Silicon Hive team

– Group develops tools (HiveLogic) to create cores and systems

– Technology has been used in a variety of products for a variety of application 
domains, including :
• video coding

• video post-processing

• imaging

• communications
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Silicon Hive technology: Four key elements
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Design-time configurable 

processor & system 

architecture templates 

supported by elaborate 

libraries of hand-optimized, 

fully parameterized

processor & peripheral 

building blocks

A unique methodology for 

fast & vast design space 

exploration at processor and 

system-level, supported by 

highly abstract design entry 

through high-level 

languages

A fully automated flow and 

corresponding tools for

(multi-) processor & 

system hardware 

generation

A fully retargetable 

programming tool suite 

based on ANSI-C source 

entry
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Background & Motivation

• Products that use our technology are
– Multi-core 

– Heterogeneous

– Application-specific (dsp, vector, vliw, custom memories, …) 

• standard SystemC/TLM used as basis for System-Simulation technology

• A generic mechanism to support application-software debugging is 
not available in SystemC reference implementation and CCI 1.0
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Background & Motivation
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Public

Standard

System debug Analysis Authoring

Checkpoint, 

Reverse 

simulation

Config, Control, Inspection Tool Use Cases

Parameters Registers Probes Save/Restore Commands

Configuration
State 

(registers, variables)

Data (performance,

power, stats)

Built-in debug 

functionality

Standard Interfaces

Model Information

Goal: Standardizing interfaces between models and tools
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Problem statement

• REQ. 1 MUST be able to simultaneously connect {0..n} debug-connections, each to a separate core

• REQ. 2 MUST provide full (normal) debug functionality per attached debugger, irrespective of other debuggers being connected

• REQ. 3 MUST suspend system-simulation completely at end of current delta-cycle in case of

• Breakpoint hit (in application code, breakpoint set via debugger)

• Error triggered (due to application-code)

• User-break request (via debugger)

• REQ. 4 MUST resume system-simulation only when all attached debuggers have issued (or still are in) ‘continue’-command

• REQ. 5 MUST suspend system-simulation when debug-connection is established during simulation

• REQ. 6 MUST remove debug-connection from current list of ‘simulation blockers’ when debug-connection is detached

• When number of ‘simulation blockers’ is 0, simulation shall resume

• REQ. 7 MUST be able to attach debugger when system in ‘suspended’-state (due to other debug-connection)

• REQ. 8 MUST be able to user-break the ‘continue’-command in a debugger when system in ‘suspended’-state

• REQ. 9 MUST function with official SystemC (currently 2.3.3) distribution

• OPEN How to handle connections to/from other simulators? How do these ‘see’ that this part is ‘suspended’?

System-
simulation 
with n-core 

models 
needs 

support for 
multi-core 
debugging

RED: not supported with previous solution
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Previous solution
As discussed in presentation SystemC Evolution Day 2020

• Parallel debug-thread & simulation-thread
• Debug-thread uses boost::asio threads to handle multiple connections

• simulation-thread is locked on interrupt/user-break/bp-hit
• Per iss-model: quite complex handling of step/run commands with 

locks/mutexes/conditions

• When simulation-thread is locked, new connections & user-break in other 
debug-connection not possible (since that requires a reaction from the 
model) 

➔ prohibits inspection of application code on other cores
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Previous solution
As discussed in presentation SystemC Evolution Day 2020

Conclusion last year:

• Move control on SystemC thread stop/continue into global 
DebugService handling the pausing/resuming of simulation

• Keep administration on corestates & debuggers

– Intercept userbreak when SystemC-thread is already stopped

– Continue only when all cores in ‘broken’-state have received continue-command
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Other approaches

• (Un)Suspend(able) – Mark burton, SCED-2019
• Proposes extension to SystemC api➔ breaks Req. 9

• sc_suspend_all(sim_context)/sc_unsuspend_all(sim_context)

• sc_suspendable()/sc_unsuspendable()

• Primarily aimed at synchronization of time between hybrid simulations (multiple os-processes), 
snapshotting

• Using async_update_request, sc_unsuspendable ()/sc_suspendable() a b_transport can be triggered 
from outside system (temporarily unblocking the simulation) ➔ breaks Req. 3/4

© Accellera Systems Initiative 11



Other approaches

• B. Farkas, Standard Compliant Snapshotting for SystemC VPs, 2019
• Uses sc_pause to enable the save_state function, thereby ensuring that the event queue is empty

• The queue will be refilled upon restarting of the simulation and restoring the previous state of the attached 
models

• Mentions possibility of snapshotting based on certain events/conditions

• IEEE 1666-2011 Standard SystemC section 4.3.4.2
• Function sc_pause shall cause the scheduler to cease execution at the end of the current delta cycle such 

that the scheduler can be resumed again later
• control is returned from sc_start to sc_main again

• sc_start may be called again to resume simulation

• Note: sc_start may only be called from within sc_main
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Synchronization control

• Parallel SimulationControl-thread & Simulation-thread
• SimulationControl-thread uses boost::asio to handle one or more control-connections

• Use sc_core::sc_pause() to suspend simulation when required
• Call sc_core::sc_start() again to resume simulation

Requires control of sc_main implementation

• Simulation-thread is paused on condition in the target: interrupt/user-break/bp-hit
• Main loop in simulation-thread: simplified handling of pause/resume using 1 mutex/lock and 1 

condition to interact with simulation-control thread

• When simulation-thread is paused & locked, new connections & user-break in other control-
connection are possible (since that does not require a reaction from the model anymore)
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Synchronization control

• SimulationControl-thread is responsible for
• #connections, #simulation_blockers

• Increase #simulation_blockers on attach/user-break, 

• Pause (suspend) simulation on #simulation_blockers == 1 
➔ controller will get correct response automatically

• If simulation was already paused (suspended)
➔ create & send artificial ‘interrupted’-response to debugger

• Decrease #simulation_blockers on continue
➔ resume simulation when #simulation_blockers==0
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Synchronization control
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Synchronization control
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Synchronization control

Code for sc_main (replacement for sc_start())
if (allowDebug) {

DebugService::getInstance().createMonitors(dbg_port); // create the sessions

std::thread debugService(debug_task, &DebugService::getInstance().io_service); 

debugService.detach(); // Do not block execution.

}

std::thread systemSimulation(simulation_task, global_quantum_value); // calls sc_start()

systemSimulation.join(); // wait until simulation finishes

if (allowDebug) {

debugService::getInstance().io_service.stop(); // cleanup resources

}
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Synchronization control

Code for debug task

// The function we want to execute on the new thread.

void debug_task(boost::asio::io_service* io_service)

{

io_service->run();

}
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Synchronization control

Code for simulation task (simplified)

void simulation_task(uint64_t quantum_value) {

… /* Initialize the Global Quantum Keeper */

bool stopped(false);

while (!stopped) {

stopped = run_sim();

if (!stopped) {

// resume again if all controllers want to continue

ControlSync::instance().waitForCommand();

}

}

}
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Synchronization control

Code for simulation task (simplified, without exception-handling)

/* returns false for paused, true for stopped and/or error */

bool run_sim() {

sc_core::sc_start();

ControlSync::instance().notifyControllers();

return (sc_core::sc_get_status() != sc_core::SC_PAUSED);

}
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Generic applicability

What if

• we use the previous concepts also for simulations without ISS-models?
– Generic system-simulation controller (api)

– Replace gdb rsp with remote-cci protocol (tbd)

• we apply the same ideas to hybrid/distributed simulations?
– State-synchronization across multiple simulators
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Generic applicability
• Simple CCI/Control-GUI for simulation

Local Simulation with integrated GUI

User Interface Simulation

GUI

ControlSync SimulationController
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© Accellera Systems Initiative 23



Generic applicability
• Control/inspect (remote) simulations

User Interface Simulation

Connection-
handling

ControlSync SimulationController

Module
Module

Module
Module

Module
Module

User Interface Simulation

Connection-
handling

ControlSync SimulationController

Module
Module

Module
Module
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Remote UI
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Generic applicability
• SystemC-simulation combined with other simulator(s): hybrid/distributed simulation

• Assumption: other simulators have a similar ‘paused’-state

• How to communicate/propagate paused-state to other simulators?

• What if we do not have control over sc_main?Simulation A

master simulator

Simulation C

slave simulator

Simulation D

slave simulator

Simulation B

slave simulator

Maintains & distributes global simulation state to slave simulators

Report local simulation state changes to master simulator

Need specialized ControlSync instances in slaves to handle 

simulation state-control (only master can pause/resume)
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Generic applicability
• Distributed simulation
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Generic simulation-control
Using generic SystemC-module implementing RunControlApi

class RunControlApi {

public:

/// constructor & destructor

RunControlApi() {};

~RunControlApi() {};

/// runcontrol

virtual void attachController()    = 0;

virtual void detachController()   = 0;

virtual void step (const sc_core::sc_time& timeStep)  = 0;

virtual void runUntilBreak()         = 0;

virtual void userBreak()                = 0; //< break current run/step

/// allow controller to inspect simulation before simulation end

virtual void endOfSimulationEvent()    = 0;

};
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Generic simulation-control

void SimulationControl::main_thread() {

while (true) {

wait(m_attachEvent);

while (m_controller) {

if (m_stepping)  wait(m_stepTime, m_detachEvent|m_userBreakEvent); 

else wait(m_detachEvent|m_userBreakEvent);

if (m_controller) { 

ControlSync::instance().controlBreak(this); sc_pause(); wait(SC_ZERO_TIME);

}

}

}

}
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Conclusion
• Current implementation (using sc_pause-mechanism) implements all requirements

under condition that:

• We have full control over sc_main implementation

• No distributed/hybrid simulation scenarios are required

• In case a model is integrated by someone else, we cannot use this solution

• We have no control over sc_main implementation, 
or it is not even used (running under direct control of the kernel, section 4.3.5 IEEE-SystemC)
Can we use sc_pause in absence of sc_start/sc_main? It would seem not..

• To become a full solution, we need some changes
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Proposal & Discussion
• Extend kernel scheduler state-machine with additional state SC_SUSPENDED

• Like SC_PAUSED, but does not return to sc_main

• Enable callbacks on transitions to/from SC_SUSPENDED 
to enable messaging to other simulators

• New api functions
• sc_start_debug()/sc_end_debug()

== sc_suspend_all()/sc_unsuspend_all with priority level

• Adapt implementation of ControlSync to use new api
• Similar way as proposed in ‘(Un)Suspend(able)’) (patch merged 09/21/2021)

• Prepare patch
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