
Multi-core Debugger Integration and
Suspend/Resume

© Accellera Systems Initiative 1

Peter de Jager

Intel Corporation

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Intel Corporation to use this material in developing all future
revisions and editions of the resulting draft and approved Accellera
Systems Initiative SystemC standard, and in derivative works based on
the standard.

© Accellera Systems Initiative 2

Outline

• Background & Motivation

• Problem statement

• Previous solution & other approaches

• Synchronization control

• Generic applicability

• Generic simulation control

• Conclusion, Proposal & Discussion

© Accellera Systems Initiative 3

Background & Motivation

• About the author:
– Located @ Intel Eindhoven, Silicon Hive team

– Group develops tools (HiveLogic) to create cores and systems

– Technology has been used in a variety of products for a variety of application
domains, including :
• video coding

• video post-processing

• imaging

• communications

© Accellera Systems Initiative 4

Silicon Hive technology: Four key elements

© Accellera Systems Initiative 5

Design-time configurable

processor & system

architecture templates

supported by elaborate

libraries of hand-optimized,

fully parameterized

processor & peripheral

building blocks

A unique methodology for

fast & vast design space

exploration at processor and

system-level, supported by

highly abstract design entry

through high-level

languages

A fully automated flow and

corresponding tools for

(multi-) processor &

system hardware

generation

A fully retargetable

programming tool suite

based on ANSI-C source

entry

Slide courtesy of Jeroen Leijten, Sr. Principal Engineer, Intel Corporation

Background & Motivation

• Products that use our technology are
– Multi-core

– Heterogeneous

– Application-specific (dsp, vector, vliw, custom memories, …)

• standard SystemC/TLM used as basis for System-Simulation technology

• A generic mechanism to support application-software debugging is
not available in SystemC reference implementation and CCI 1.0

© Accellera Systems Initiative 6

Background & Motivation

7

Public

Standard

System debug Analysis Authoring

Checkpoint,

Reverse

simulation

Config, Control, Inspection Tool Use Cases

Parameters Registers Probes Save/Restore Commands

Configuration
State

(registers, variables)

Data (performance,

power, stats)

Built-in debug

functionality

Standard Interfaces

Model Information

Goal: Standardizing interfaces between models and tools

© Accellera Systems Initiative

*

*

*

Problem statement

• REQ. 1 MUST be able to simultaneously connect {0..n} debug-connections, each to a separate core

• REQ. 2 MUST provide full (normal) debug functionality per attached debugger, irrespective of other debuggers being connected

• REQ. 3 MUST suspend system-simulation completely at end of current delta-cycle in case of

• Breakpoint hit (in application code, breakpoint set via debugger)

• Error triggered (due to application-code)

• User-break request (via debugger)

• REQ. 4 MUST resume system-simulation only when all attached debuggers have issued (or still are in) ‘continue’-command

• REQ. 5 MUST suspend system-simulation when debug-connection is established during simulation

• REQ. 6 MUST remove debug-connection from current list of ‘simulation blockers’ when debug-connection is detached

• When number of ‘simulation blockers’ is 0, simulation shall resume

• REQ. 7 MUST be able to attach debugger when system in ‘suspended’-state (due to other debug-connection)

• REQ. 8 MUST be able to user-break the ‘continue’-command in a debugger when system in ‘suspended’-state

• REQ. 9 MUST function with official SystemC (currently 2.3.3) distribution

• OPEN How to handle connections to/from other simulators? How do these ‘see’ that this part is ‘suspended’?

System-
simulation
with n-core

models
needs

support for
multi-core
debugging

RED: not supported with previous solution

8© Accellera Systems Initiative

Previous solution
As discussed in presentation SystemC Evolution Day 2020

• Parallel debug-thread & simulation-thread
• Debug-thread uses boost::asio threads to handle multiple connections

• simulation-thread is locked on interrupt/user-break/bp-hit
• Per iss-model: quite complex handling of step/run commands with

locks/mutexes/conditions

• When simulation-thread is locked, new connections & user-break in other
debug-connection not possible (since that requires a reaction from the
model)

➔ prohibits inspection of application code on other cores

© Accellera Systems Initiative 9

Previous solution
As discussed in presentation SystemC Evolution Day 2020

Conclusion last year:

• Move control on SystemC thread stop/continue into global
DebugService handling the pausing/resuming of simulation

• Keep administration on corestates & debuggers

– Intercept userbreak when SystemC-thread is already stopped

– Continue only when all cores in ‘broken’-state have received continue-command

© Accellera Systems Initiative 10

Other approaches

• (Un)Suspend(able) – Mark burton, SCED-2019
• Proposes extension to SystemC api➔ breaks Req. 9

• sc_suspend_all(sim_context)/sc_unsuspend_all(sim_context)

• sc_suspendable()/sc_unsuspendable()

• Primarily aimed at synchronization of time between hybrid simulations (multiple os-processes),
snapshotting

• Using async_update_request, sc_unsuspendable ()/sc_suspendable() a b_transport can be triggered
from outside system (temporarily unblocking the simulation) ➔ breaks Req. 3/4

© Accellera Systems Initiative 11

Other approaches

• B. Farkas, Standard Compliant Snapshotting for SystemC VPs, 2019
• Uses sc_pause to enable the save_state function, thereby ensuring that the event queue is empty

• The queue will be refilled upon restarting of the simulation and restoring the previous state of the attached
models

• Mentions possibility of snapshotting based on certain events/conditions

• IEEE 1666-2011 Standard SystemC section 4.3.4.2
• Function sc_pause shall cause the scheduler to cease execution at the end of the current delta cycle such

that the scheduler can be resumed again later
• control is returned from sc_start to sc_main again

• sc_start may be called again to resume simulation

• Note: sc_start may only be called from within sc_main

© Accellera Systems Initiative 12

Synchronization control

• Parallel SimulationControl-thread & Simulation-thread
• SimulationControl-thread uses boost::asio to handle one or more control-connections

• Use sc_core::sc_pause() to suspend simulation when required
• Call sc_core::sc_start() again to resume simulation

Requires control of sc_main implementation

• Simulation-thread is paused on condition in the target: interrupt/user-break/bp-hit
• Main loop in simulation-thread: simplified handling of pause/resume using 1 mutex/lock and 1

condition to interact with simulation-control thread

• When simulation-thread is paused & locked, new connections & user-break in other control-
connection are possible (since that does not require a reaction from the model anymore)

© Accellera Systems Initiative 13

GREEN: major difference with previous solution

Synchronization control

• SimulationControl-thread is responsible for
• #connections, #simulation_blockers

• Increase #simulation_blockers on attach/user-break,

• Pause (suspend) simulation on #simulation_blockers == 1
➔ controller will get correct response automatically

• If simulation was already paused (suspended)
➔ create & send artificial ‘interrupted’-response to debugger

• Decrease #simulation_blockers on continue
➔ resume simulation when #simulation_blockers==0

© Accellera Systems Initiative 14

GREEN: major difference with previous solution

Synchronization control

© Accellera Systems Initiative 15

Simulation

Session threads Simulation Control thread

SystemC thread

DEBUGGER
(gdb)

Debug
Service

SystemC Processor
ISS Model

IPC

Debug
Instrumentation

Additional code to implement

DebugAPI

Process adaptation for

breakpoints etc.

notification Inspection/

Run-control

rsp
Debugger

Session

DEBUG
Adaptor

Debugger
Session
Debug
Session

DEBUG
Adaptor

DebugAPI

Debug
Adaptor

Synchronization control

© Accellera Systems Initiative 16

Simulation-thread

System

start/resume

systemC scheduler

ISS

while (true) {

execute();

if (condition) {

sc_pause();

sc_wait(SC_ZERO_TIME);

}

}ISS ISS

Dev
Dev

Dev
Dev

Dev

ControlSync-thread

Connection
(asio)

Commands/data

to/from debugger

Connection
(asio)

Commands/data

to/from debugger

Connection
(asio)

Commands/data

to/from debugger

Command
Handler

Command
Handler

Command
Handler IntrospectionApi

RunControlApi

ControlSync

Waiting for data

RCV/SND

Data completed

created

Boost asio connection

exit

Handle data

Decode

Insert in queue

created

Dbg protocol decoder

Issue cmd

Waiting

Get results

created

Queue Handler

result

Dbg cmd

take top

if !userbreak

Userbreak

SC_RUNNING

SC_PAUSED

created

SystemC Thread

sc-start issued

SC_STOPPED

sc_start sc_pause sc_stop

sc_stop

NO_BLOCKER

1 BLOCKER

created

ControlSync

n_BLOCKERS

Start/Resume
simulation

Pause simulation

Userbreak ||
step/run ended
with bp/error

Userbreak

Increase/decrease

Until Paused

© Accellera Systems Initiative 17

Synchronization control

Synchronization control

Code for sc_main (replacement for sc_start())
if (allowDebug) {

DebugService::getInstance().createMonitors(dbg_port); // create the sessions

std::thread debugService(debug_task, &DebugService::getInstance().io_service);

debugService.detach(); // Do not block execution.

}

std::thread systemSimulation(simulation_task, global_quantum_value); // calls sc_start()

systemSimulation.join(); // wait until simulation finishes

if (allowDebug) {

debugService::getInstance().io_service.stop(); // cleanup resources

}

© Accellera Systems Initiative 18

Boost asio

TLM global quantum

Synchronization control

Code for debug task

// The function we want to execute on the new thread.

void debug_task(boost::asio::io_service* io_service)

{

io_service->run();

}

© Accellera Systems Initiative 19

Synchronization control

Code for simulation task (simplified)

void simulation_task(uint64_t quantum_value) {

… /* Initialize the Global Quantum Keeper */

bool stopped(false);

while (!stopped) {

stopped = run_sim();

if (!stopped) {

// resume again if all controllers want to continue

ControlSync::instance().waitForCommand();

}

}

}

© Accellera Systems Initiative 20

Synchronization control

Code for simulation task (simplified, without exception-handling)

/* returns false for paused, true for stopped and/or error */

bool run_sim() {

sc_core::sc_start();

ControlSync::instance().notifyControllers();

return (sc_core::sc_get_status() != sc_core::SC_PAUSED);

}

© Accellera Systems Initiative 21

Generic applicability

What if

• we use the previous concepts also for simulations without ISS-models?
– Generic system-simulation controller (api)

– Replace gdb rsp with remote-cci protocol (tbd)

• we apply the same ideas to hybrid/distributed simulations?
– State-synchronization across multiple simulators

© Accellera Systems Initiative 22

Generic applicability
• Simple CCI/Control-GUI for simulation

Local Simulation with integrated GUI

User Interface Simulation

GUI

ControlSync SimulationController

Module
Module

Module
Module

Module
Module

CCI

Run

Control

Paused

Running

Status

Run

Step

Break

Control

Info (via cci)

value

value

value

Stopped

© Accellera Systems Initiative 23

Generic applicability
• Control/inspect (remote) simulations

User Interface Simulation

Connection-
handling

ControlSync SimulationController

Module
Module

Module
Module

Module
Module

User Interface Simulation

Connection-
handling

ControlSync SimulationController

Module
Module

Module
Module

Module
Module

Simulation A

Simulation B

Simulation info
• Name
• Configuration
• ip:port
• Description

Remote UI

© Accellera Systems Initiative 24

Generic applicability
• SystemC-simulation combined with other simulator(s): hybrid/distributed simulation

• Assumption: other simulators have a similar ‘paused’-state

• How to communicate/propagate paused-state to other simulators?

• What if we do not have control over sc_main?Simulation A

master simulator

Simulation C

slave simulator

Simulation D

slave simulator

Simulation B

slave simulator

Maintains & distributes global simulation state to slave simulators

Report local simulation state changes to master simulator

Need specialized ControlSync instances in slaves to handle

simulation state-control (only master can pause/resume)

© Accellera Systems Initiative 25

Generic applicability
• Distributed simulation

User Interface Simulation

GUI

ControlSync SimulationController

Module
Module

Module
Module

Module
Module

User Interface Simulation

GUI

ControlSync SimulationController

Module
Module

Module
Module

Module
Module

Simulation A

Simulation B

State
Synchronizer

© Accellera Systems Initiative 26

NO_BLOCKER

1 BLOCKER

created

ControlSync

n_BLOCKERS

Start/Resume
simulation

Pause simulation

Waiting for data

RCV/SND

Data completed

created

Boost asio connection

exit

Handle data

Decode

Insert in queue

created

CCI-Command protocol decoder

Issue cmd

Waiting

Get/Set results

created

Queue Handler

result

CCI-Cmd

take top

if !userbreak

Userbreak

SC_RUNNING

SC_PAUSED

created

SystemC Thread

sc-start issued

SC_STOPPED

sc_start sc_pause sc_stop

sc_stop

Userbreak ||
step/run ended
with bp/error

Userbreak

Increase/decrease

Until Paused

Use CCI

CCI-specific serialization/deserializationCCI-specific protocol Additional Control-module

© Accellera Systems Initiative 27

Generic simulation-control

Generic simulation-control
Using generic SystemC-module implementing RunControlApi

class RunControlApi {

public:

/// constructor & destructor

RunControlApi() {};

~RunControlApi() {};

/// runcontrol

virtual void attachController() = 0;

virtual void detachController() = 0;

virtual void step (const sc_core::sc_time& timeStep) = 0;

virtual void runUntilBreak() = 0;

virtual void userBreak() = 0; //< break current run/step

/// allow controller to inspect simulation before simulation end

virtual void endOfSimulationEvent() = 0;

};

© Accellera Systems Initiative 28

Generic simulation-control

void SimulationControl::main_thread() {

while (true) {

wait(m_attachEvent);

while (m_controller) {

if (m_stepping) wait(m_stepTime, m_detachEvent|m_userBreakEvent);

else wait(m_detachEvent|m_userBreakEvent);

if (m_controller) {

ControlSync::instance().controlBreak(this); sc_pause(); wait(SC_ZERO_TIME);

}

}

}

}

© Accellera Systems Initiative 29

Conclusion
• Current implementation (using sc_pause-mechanism) implements all requirements

under condition that:

• We have full control over sc_main implementation

• No distributed/hybrid simulation scenarios are required

• In case a model is integrated by someone else, we cannot use this solution

• We have no control over sc_main implementation,
or it is not even used (running under direct control of the kernel, section 4.3.5 IEEE-SystemC)
Can we use sc_pause in absence of sc_start/sc_main? It would seem not..

• To become a full solution, we need some changes

© Accellera Systems Initiative 30

Proposal & Discussion
• Extend kernel scheduler state-machine with additional state SC_SUSPENDED

• Like SC_PAUSED, but does not return to sc_main

• Enable callbacks on transitions to/from SC_SUSPENDED
to enable messaging to other simulators

• New api functions
• sc_start_debug()/sc_end_debug()

== sc_suspend_all()/sc_unsuspend_all with priority level

• Adapt implementation of ControlSync to use new api
• Similar way as proposed in ‘(Un)Suspend(able)’) (patch merged 09/21/2021)

• Prepare patch

© Accellera Systems Initiative 31

© Accellera Systems Initiative 32

SC_RUNNING

SC_PAUSED

created

SystemC Scheduler states

sc-start issued

SC_STOPPED

sc_start sc_pause sc_stop

sc_stop

SC_SUSPENDED

sc_stop

sc_start_dbg sc_end_dbg

callbacks

Proposal & Discussion

