
Accellera SystemC Standards Update
October 2021

Martin Barnasconi

Accellera Technical Committee Chair

© Accellera Systems Initiative 1

accellera.org

https://accellera.org/

Outline

• Accellera Systems Initiative

• SystemC ecosystem

• Accellera SystemC Working Groups
– SystemC Language Working Group

– SystemC Analog/Mixed-Signal Working Group

– SystemC Configuration, Control & Inspection Working Group

– SystemC Synthesis Working Group

– SystemC Verification Working Group

• Contribute to systemc.org

• IEEE related Working Groups

• Advancing SystemC Standards Together

© Accellera Systems Initiative 2

© Accellera Systems Initiative 3

Accellera Systems Initiative

Our Mission

To provide a platform in which the

electronics industry can collaborate

to innovate and deliver global

standards that improve design and

verification productivity for

electronics products.

Accellera Membership - Broad Industry Support

© Accellera Systems Initiative 4

Corporate Members Associate Members

Start-Up and University

Accellera Standards Developments

© Accellera Systems Initiative 5

SystemC ecosystem

• SystemC is a C++-based language
standard, widely used for
– System-level modeling,

design and verification

– Architectural exploration,
performance modeling

– Analog/mixed signal modeling

– High-level Synthesis

– Software development

• Defined by Accellera, ratified as
IEEE Std. 1666-2011 (SystemC) and
IEEE Std. 1666.1-2016 (SystemC AMS)

© Accellera Systems Initiative 6

Methodology- and Technology-specific Libraries

SystemC Core Language

Structural
Elements

Modules

Ports

Exports

Interfaces

Channels

Data Types

4-valued logic type

4-valued logic vectors

Bit vectors

Finite-precision integers

Limited-precision integers

Fixed-point types

Predefined
Channels

Signal, clock, FIFO,

mutex, semaphore

Utilities

Report

handling,

tracing

Event-driven Simulation
Events, processes

IE
E
E
 S

td
.

1
6

6
6

-2
0

1
1

TLM AMS
IEEE Std. 1666.1-2016

Application
Written by the End User

CCI SCV
UVM-

SystemC

Programming Language C++
ISO/IEC Std. 14882-2003

Accellera SystemC Working Groups
• SystemC Language Working Group (LWG)

– Chair: Laurent Maillet-Contoz (ST)
– Subgroups

• Transaction-Level Modeling (TLMWG), Chair: Bart Vanthournout (Synopsys)
• SystemC Datatypes (SDTWG), Chair: Frederic Doucet (Qualcomm)
• Common Practices (CPSWG): Chair: Mark Burton (GreenSocs)

• SystemC Analog/Mixed-Signal Working Group (AMSWG)
– Chair: Martin Barnasconi (NXP)

• SystemC Configuration, Control & Inspection Working Group (CCIWG)
– Chair: Ola Dahl (Ericsson)

• SystemC Synthesis Working Group (SWG)
– Chair: Andres Takach (Mentor)

• SystemC Verification Working Group (VWG)
– Chair: Stephan Gerth (Bosch)

© Accellera Systems Initiative 7

SystemC Language Working Group

• The SystemC Language Working Group is responsible for the definition and development
of the SystemC core language, the foundation on which all other SystemC libraries and
functionality are built

• Current status

– Finalizing SystemC language updates and delivering these to IEEE P1666 Working Group

– SystemC reference implementation available at GitHub

– IEEE Std. 1666-2011 is available at no cost, sponsored by Accellera, under the IEEE GET Program

• Developments & future plans

– Studying performance of updated SystemC Datatypes implementations, integration into SystemC
reference implementation to enable regression testing and validation

– SystemC Common practices group currently evaluating various register implementations, following
the Call for Contributions announced in July 2021

– Updating SystemC reference implementation, as part of upcoming release SystemC 2.3.4

© Accellera Systems Initiative 8

https://github.com/accellera-official/systemc
https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=80

Common Practices Working Group

• Open to contributions from everybody

• Published PySysC

– SystemC bindings for Python, available in the accellera-official public repository

• Evaluating community contributions offering register implementations

– SystemC Components (SCC) contributed by MINRES Technologies GmbH

– Virtual Components Modeling Library (VCML) contributed by Jan Weinstock and
Lukas Jünger

• References to these libraries and results will be published on
systemc.org

© Accellera Systems Initiative 9

https://github.com/accellera-official/PySysC
https://github.com/accellera-official/
https://github.com/Minres/SystemC-Components
https://github.com/janweinstock/vcml
https://systemc.org/

Data types Working Group

• Simulation performance improvements under development for types
sc_bigint and sc_biguint

• Current focus is on

– Benchmarking and optimization

– Functional correctness

• Aim is to have limited or no changes to the SystemC language standard

– Different implementation configurations are being explored

• New data types being considered: sc_complex and sc_float

© Accellera Systems Initiative 10

SystemC Analog/Mixed-Signal WG

• The SystemC AMS Working Group is responsible for the standardization of the
SystemC AMS extensions, defining and developing the language, methodology and
class libraries for analog, mixed-signal and RF modeling in SystemC

• Current status
– IEEE Std. 1666.1-2016 is available at no cost, sponsored by Accellera, under the IEEE GET Program

– SystemC AMS Proof-of-concept version 2.3 made available via Accellera member company

– SystemC AMS getting started material available: User’s Guide and application examples

• Developments & future plans
– Finalizing updates of the SystemC AMS regression suite, released by Accellera in coming period

– First proposals created for new SystemC AMS language enhancements and features for next IEEE
P1666.1 revision

© Accellera Systems Initiative 11

https://ieeexplore.ieee.org/browse/standards/get-program/page/series?id=80
https://www.coseda-tech.com/systemc-ams-proof-of-concept
https://www.accellera.org/images/downloads/standards/systemc/Accellera_SystemC_AMS_Users_Guide_January_2020.pdf
https://www.accellera.org/images/downloads/standards/systemc/application_examples.zip

SystemC Analog/Mixed-Signal WG

• SystemC AMS defines 3 additional
models of computation focusing
on efficient AMS / RF system-level
modeling concepts
– Timed Data Flow (TDF)

– Linear Signal Flow (LSF)

– Electrical Linear Networks (ELN)

• Practical SystemC AMS User’s
Guide and application examples
explaining the language constructs
and execution semantics in detail

© Accellera Systems Initiative 12

Methodology- and Technology-specific Libraries

SystemC Analog/Mixed-Signal (AMS) Language

Electrical Linear
Networks (ELN)

Predefined primitive

modules, terminals,

nodes

Application
Written by the End User

SystemC Core Language
IEEE Std. 1666-2011

Linear Signal
Flow (LSF)

Predefined primitive

modules, ports,

signals

Timed Data
Flow (TDF)

Modules, ports,

signals, embedded

linear equations

Scheduler Linear DAE Solver

Time-domain and small-signal frequency-domain
simulation infrastructure

Utilities and
Data Types

Complex type

Vector type

Matrix type

Constants

Tracing

Reporting

IE
E
E
 S

td
.

1
6

6
6

.1
-2

0
1
6

Programming Language C++
ISO/IEC Std. 14882-2003

SystemC Configuration, Control & Inspection WG

• The SystemC Configuration, Control and Inspection WG is responsible for developing
standards that allow tools to interact with models in order to perform activities such
as debug, analysis, authoring and checkpointing

• Current status
– SystemC CCI 1.0 Language Reference Manual released as Accellera standard in 2018

– CCI 1.0 standard supported by Proof-of-Concept Kit including reference implementation and
examples

• Developments and future plans
– Updates and clean-up of the CCI Proof-of-Concept Kit, compatible with other SystemC reference

implementations, preparing release CCI 1.0.1

– Definition of Inspection API ongoing, in close collaboration SystemC Common Practices WG which
is reviewing register contributions

© Accellera Systems Initiative 13

https://www.accellera.org/images/downloads/standards/systemc/SystemC_CCI_1_0_LRM.pdf
https://www.accellera.org/images/downloads/standards/systemc/cci-1.0.0.zip

SystemC Configuration, Control & Inspection WG

• CCI 1.0 covers standardized
interfaces for parameters

• Current focus on Inspection
API

© Accellera Systems Initiative 14

Configuration

System
debug

Authoring

Checkpoint,
Reverse

simulation
Analysis

Parameters

State
(registers, variables)

Data
(performance, power, stats)

Use cases

Model information

Standard abstractions

Inspection Probes Save / Restore Commands

Build-in debug
functionality

SystemC Synthesis WG

• The SystemC Synthesis Working Group is responsible for the SystemC synthesizable
subset, to enable synthesis of digital hardware from high-level specifications

• Current status
– Released the SystemC Synthesis Subset Language Reference Manual version 1.4.7 in 2017

• Developments and future plans
– Working Group defining next revision of the SystemC Synthesizable Subset, including:

– Alignment and consolidation on SystemC Datatypes to enhance HLS flows

– Update and finalize support of modern C++ language features defined in C++11/14/17

© Accellera Systems Initiative 15

https://www.accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7.pdf

SystemC Verification Working Group

© Accellera Systems Initiative 16

• The SystemC Verification WG is responsible for defining verification extensions to
the SystemC standard and reference implementation by offering an add-on libraries
to ease the deployment of a verification methodology based on SystemC

• Current Status
– UVM in SystemC (UVM-SystemC) standard and reference implementation 1.0beta3 released in 2020

– SystemC Verification Library version 2.0.1 in maintenance mode

– DVCon U.S. 2021 Video available: UVM-SystemC Randomization - Updates From The SystemC
Verification WG

• Developments of future plans
– Finalizing UVM-SystemC library 1.0beta4, planned for later this year

– Standardization of API for Constrained Randomization(CRAVE) and Functional Coverage (FC4SC)

– Initial discussions on Temporal Assertions in the SystemC language started

https://www.accellera.org/images/downloads/drafts-review/uvm-systemc-10-beta3tar.gz
https://www.accellera.org/images/downloads/standards/systemc/scv-2.0.1.tar.gz
https://vimeo.com/533483283

SystemC Verification Working Group

• The UVM-SystemC library enables the
creation of a modular, scalable,
configurable and reusable testbenches
– Following the principles of the Universal

Verification Methodology (UVM)

– Implemented in C++/SystemC, offering
flexibility and reuse across verification and
validation domains

• Additional verification-specific features
such as constrained randomization and
functional coverage will be addressed
by supporting add-on libraries such as
CRAVE and FC4SC

© Accellera Systems Initiative 17

SystemC Core Language
IEEE Std. 1666-2011

Programming Language C++
ISO/IEC Std. 14882-2003

System-level Verification and Validation Methodology

UVM in SystemC

Register Layer

Registers, memories,

address maps,

adaptor, predictor,

backdoor access

Application
Written by the End User

Stimuli

Transaction,

sequence item,

sequence, virtual

sequence

Components

Test, environment, agent,

driver, monitor,

sequencer, scoreboard,

subscriber

Configuration

Registry, resource,

resource database,

configuration

database, factory

Utilities

reporting,

recording,

policies, phasing,

callbacks

Randomization*
(CRAVE)

Random variables and

objects, constraints,

constraint solvers

Functional coverage*
(FC4SC)

Covergroups, bins,

coverpoints, crosses, type

and instance, sampling

Temporal
assertions*

Immediate and

concurrent assertions,

combining sequences

* Integration on Roadmap

Contribute to systemc.org

• New SystemC Community Portal
– Download standards and reference

implementations

– Resources (Books, Project, Tutorials, Videos, …)

– Upcoming and past events

– Link to Discussion Forum (link)

– Link to Accellera public GitHub repository

– Common practices and community libraries

• YOU can help in adding content!
– Submit your pull request to

github.com/accellera-official/systemc.org

© Accellera Systems Initiative 18

https://github.com/accellera-official/
https://github.com/accellera-official/systemc.org

IEEE related Working Groups

• P1666
– IEEE Standard for Standard SystemC Language Reference Manual Working Group (LWG)

– Latest version: IEEE 1666-2011, published 2012-01-09

– Chair: Jerome Cornet (ST Microelectronics)

– P1666 WG currently active, standardization of next 1666 revision ongoing

• P1666.1
– IEEE Standard for Standard SystemC(R) Analog/Mixed-Signal Extensions Language

Reference Manual

– Latest version: IEEE 1666.1-2016, Published 2016-04-06

– Chair: Martin Barnasconi (NXP)

– P1666.1 WG not active, will restart in ~2023

© Accellera Systems Initiative 19

Advancing SystemC Standards Together
• Become an Accellera Working Group member

– Join Accellera and participate in the Accellera working groups

– Direct access to the latest standardization proposals and development tree

• Become a member of the IEEE Standards Association
– Join IEEE-SA to participate in the ongoing standardization in the P1666 (SystemC) working group

• Share your experiences
– Visit www.accellera.org and join the community forums at forums.accellera.org

– Report your issues and/or create pull requests on the public SystemC GitHub repository

• Help us to grow the SystemC ecosystem and community
– Participate in community events such as the SystemC Evolution Day

– Contribute to the SystemC Community Portal systemc.org

– Promote the use of the SystemC standard in complex system simulation tasks

© Accellera Systems Initiative 20

https://www.accellera.org/about/join
https://standards.ieee.org/
http://www.accellera.org/
http://forums.accellera.org/
https://github.com/accellera-official/systemc
https://www.accellera.org/news/events/systemc-evolution-day-2020
https://systemc.org/

Thank You

Q&A

© Accellera Systems Initiative 21

