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Introduction
A Path of SystemC Discovery

• OneSpin working in SystemC space for about 2 years
– Cooperating with several large users on Formal Verification for the HLS flow

• In this time we have learned a lot about tool development 
and usage issues in this SystemC segment

• We would like to share some of the things we have seen and 
make a few suggestions



Focus on abstract hardware

SystemC Broad Application Space
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SystemC High Level Synthesis
Important SystemC Sweet Spot

• High-Level Synthesis SystemC Market
– Possibly larger than generally realized

– Focus: 
Image and communications DSP algorithms

– SystemC provides benefits over HDLs

– Appears to be an expanding area

– Many more doing C refinement without HLS

• Companies working in this area
– Toshiba - NXP (possibly)

– Fujitsu - ST (possibly)

– Sony - ARM

– NEC - Infineon

– MEE - Samsung

– Intel - Huawei

– Qualcomm - Broadcom

– BlueWire - Canon

And plenty of others
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C++/SystemC Abstraction
Range of Issues
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Verification Target
• Proprietary library issues 

• HLS libraries required by other tools 

to read these designs

• SystemC hardware coding issues, e.g.

• No undefined (X) signal state

• Race conditions between threads

• HLS algorithm coding issues, e.g.

• Number system verification

• Operation hard to comprehend



OneSpin in the HLS Flow
Formal Being Used to Solve These Issues
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C++/SystemC HLS Relies on Proprietary Libraries
Goes Against Ideals of the Standard

StimulusStimulus
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• HLS tools require additional language capabilities
• Currently these are being provided in proprietary 

libraries
– For good reason; we’re not criticizing HLS vendors

• Synthesis subset committee not really providing answer
• For greater HLS ecosystem, this issue needs to be solved 



Algorithmic Example
Varied Bit Widths in DSP Function

“Generalized” Filter implementation options 

– hardware structure below or MAC working with buffer

Different bit widths due to coefficient sizes may be used to optimize design
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Overflow checking for fixed floating points

• Assigning different width types may loose precision
– Saturation mode can be set, default is to cut (possibly significant) bits

– More confusion than with integer types, because of 2 parameters: bit width 
and non-fractional part

– Non-fractional part important

– Operations are value preserving

• E.g. 16bit multiplied by 13 bit gives 29 bits

• Converting unsigned to signed adds one bit

– Truncation is done only in one operation: assignment

– Why not place check that non-fractional part is preserved depending on the 
rounding mode

– Defines could control whether overflows shall be checked, and whether 
they should result in an abort or just a message

• Could be extended to sc_(u)int, too



Examples

• sc_(u)fixed<W1,I1> is assigned to sc_(u)fixed<W,I>

sc_ufixed<8,8> a, b, c; * Default sc_o_mode is SC_WRAP
When using SC_WRAP, we should check for overflow

sc_ufixed<9,9> d;
a = b+c; => FAIL(if b+c > 2^8)
a = sc_ufixed<8,8>(b+c); => NO FAIL
a = sc_ufixed<8,8,SC_TRN,SC_SAT>(b+c); => NO FAIL
d = b+c; => NO FAIL

sc_ufixed<8,8,SC_TRN,SC_SAT> e; * If sc_o_mode is other than SC_WRAP, 
overflow checking

is not required
e = b+c; => NO FAIL

sc_ufixed<8,8> f(b+c); => FAIL
sc_ufixed<8,8> g = 500; => FAIL



Overflow when assigning to sc_ufixed
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Overflow when assigning to sc_fixed

if(I<I1 && O_MODE==SC_WRAP) {

if(a>=0) {

if(a.range(W1-1,W1-(I1-I+1))!=0) assert(false);

} else {

if(a.range(W1-1,W1-(I1-I+1))!=sc_biguint<I1-I+1>(-1)) 

assert(false);

}

}
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Special cases

• I > W or I1 > W1

• I < 0 or I1 < 0

– No overflow possible, as no non-fractional part

• Singularity for sc_fixed, I1 == 1 and I == 0 
(only sign bit)

sc_fixed<1,1> a; // W1=1, I1=1, a is 0 or -1

sc_fixed<1,0> b; // W=1, I=0, b is 0 or -0.5

b = a; // If a is -1, OVERFLOW occurs



SystemC Imposes Code Structure
Can Lead to Hard-to-Verify Issues

Classic SystemC coding issues

• Lack of X state hides potential instability

• Write-write-race between threads

• Arithmetic overflow on data path

• Hard to verify algorithm versus spec

• Port-size mismatch at interface

• Array-out-of-bounds access on buffer

• Dead code and unreachable FSM states

• Packet loss on data transfer



Initialization

• SystemC has (due to it’s mother language C++) automatic 
initialization

– But: Synthesis semantics specifies that initializations from  module constructor shall be ignored

– This leads to simulation-synthesis mismatches

– Why not make this explicit by adding a template parameter to at least sc_out/sc_signal
specifying that a random value should be used for initialization

– This makes missing initialization problems visible much earlier in the verification flow which are 
currently difficult to catch

• Proposal:
– Add a template parameter to sc_out, sc_signal specifying the reset behavior

– The default for this parameter shall be the current behavior

– Add sc_signal_inout_if::write registering a write

– Add sc_signal_inout_if::read delivering a random value before the first write if the 
reset behavior is set to synthesis semantics



Arrays

• SystemC has out-of-bounds checking for bit vectors, sc_(u)_int, …

– But for vectors, good old C-arrays must be used

• In C++ Software development, C-Arrays are superseded by std::vector

• Std::vector is dynamic, thus not suitable for hardware

• bounds checking is available – either by using .at() or by optional debugging code

• Why no sc_array class ?
– Same interface as C-Arrays

– (Optional) Bounds checking

– Would make hard to find out-of-bounds errors much 
easier to find

– In-line with other sc_* classes doing bounds checking

– Operator [] asserts on OOB

– Function at throws exception on OOB



Summary
A Path of SystemC Discovery

• HLS language issues restricting proliferation

• SystemC verification issues driving indirect, post-
synthesis verification
– Eliminates many of the advantages of HLS

• A few enhancements could make a difference
– Proprietary code
– Coding restrictions
– Algorithmic design


