
SystemC Suggested Improvements
Based On a Formal Flow of HLS Code

Dominik Strasser

VP Engineering
OneSpin Solutions

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by OneSpin Solutions to use this
material in developing all future revisions and editions of
the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based
on this standard.

Introduction
A Path of SystemC Discovery

• OneSpin working in SystemC space for about 2 years
– Cooperating with several large users on Formal Verification for the HLS flow

• In this time we have learned a lot about tool development
and usage issues in this SystemC segment

• We would like to share some of the things we have seen and
make a few suggestions

Focus on abstract hardware

SystemC Broad Application Space
OneSpin Focus: HLS Segment

Algorithm
Components

Algorithm
Components

Data & control
for high level

synthesis

Data & control
for high level

synthesis

Configurable
IP

Configurable
IP

Greater
configurability

through
synthesis

Greater
configurability

through
synthesis

RTL
Design

RTL
Design

RTL flow with
extra testing
RTL flow with
extra testing

Verification
Stimulus

Verification
Stimulus

Testbenches
often for data

generation,
etc

Testbenches
often for data

generation,
etc

Processor
Architecture

Processor
Architecture

Fast method
for extensive

processor
verification

Fast method
for extensive

processor
verification

Virtual
Platforms

Virtual
Platforms

Software
test platform

Software
test platform

SystemC High Level Synthesis
Important SystemC Sweet Spot

• High-Level Synthesis SystemC Market
– Possibly larger than generally realized

– Focus:
Image and communications DSP algorithms

– SystemC provides benefits over HDLs

– Appears to be an expanding area

– Many more doing C refinement without HLS

• Companies working in this area
– Toshiba - NXP (possibly)

– Fujitsu - ST (possibly)

– Sony - ARM

– NEC - Infineon

– MEE - Samsung

– Intel - Huawei

– Qualcomm - Broadcom

– BlueWire - Canon

And plenty of others

C/C++

algorithm

executable

specification

High Level

Synthesis

(HLS)

Verilog / VHDL

RTL

RTL Synthesis

P&R

Device

C++/SystemC Verilog/VHDL

C++/SystemC

Loosely Timed

MicroArchitecture

SystemC

Cycle Accurate

Model

HLS Model

C++/SystemC Abstraction
Range of Issues

C++/SystemC

Loosely Timed

MicroArchitecture

SystemC

Cycle Accurate

Model

HLS Model

Verification Target
• Proprietary library issues

• HLS libraries required by other tools

to read these designs

• SystemC hardware coding issues, e.g.

• No undefined (X) signal state

• Race conditions between threads

• HLS algorithm coding issues, e.g.

• Number system verification

• Operation hard to comprehend

OneSpin in the HLS Flow
Formal Being Used to Solve These Issues

SystemC

Golden

Model

Verilog/VHDL

RTL Model

Assertion-Based

Verification

SVA
C AssertsStratus

High-Level

Synthesis

SystemC/C++

Code Apps

Specialized

HLS Apps

Automated Formal

Verification

C++/SystemC HLS Relies on Proprietary Libraries
Goes Against Ideals of the Standard

StimulusStimulus

Algorithm
SystemC code

Algorithm
SystemC code

Proprietary HLS
library

Proprietary HLS
library

• HLS tools require additional language capabilities
• Currently these are being provided in proprietary

libraries
– For good reason; we’re not criticizing HLS vendors

• Synthesis subset committee not really providing answer
• For greater HLS ecosystem, this issue needs to be solved

Algorithmic Example
Varied Bit Widths in DSP Function

“Generalized” Filter implementation options

– hardware structure below or MAC working with buffer

Different bit widths due to coefficient sizes may be used to optimize design

Σ Σ

Input [15:0]

RND

Output [15:0]

16 16

16 16 16

Fixed
Coeff 0-1

Fixed
Coeff 0-1

Fixed
Coeff 0-1

?

? ?

? ?

?

Overflow checking for fixed floating points

• Assigning different width types may loose precision
– Saturation mode can be set, default is to cut (possibly significant) bits

– More confusion than with integer types, because of 2 parameters: bit width
and non-fractional part

– Non-fractional part important

– Operations are value preserving

• E.g. 16bit multiplied by 13 bit gives 29 bits

• Converting unsigned to signed adds one bit

– Truncation is done only in one operation: assignment

– Why not place check that non-fractional part is preserved depending on the
rounding mode

– Defines could control whether overflows shall be checked, and whether
they should result in an abort or just a message

• Could be extended to sc_(u)int, too

Examples

• sc_(u)fixed<W1,I1> is assigned to sc_(u)fixed<W,I>

sc_ufixed<8,8> a, b, c; * Default sc_o_mode is SC_WRAP
When using SC_WRAP, we should check for overflow

sc_ufixed<9,9> d;
a = b+c; => FAIL(if b+c > 2^8)
a = sc_ufixed<8,8>(b+c); => NO FAIL
a = sc_ufixed<8,8,SC_TRN,SC_SAT>(b+c); => NO FAIL
d = b+c; => NO FAIL

sc_ufixed<8,8,SC_TRN,SC_SAT> e; * If sc_o_mode is other than SC_WRAP,
overflow checking

is not required
e = b+c; => NO FAIL

sc_ufixed<8,8> f(b+c); => FAIL
sc_ufixed<8,8> g = 500; => FAIL

Overflow when assigning to sc_ufixed

W

I

W1

I1

W1

I1

W

I
I1-I

if(I<I1 && O_MODE==SC_WRAP) {

if(a.range(W1-1,W1-(I1-I))!=0) assert(false);

}

Bigger than 0

If non-zero, overflow occurs

I1-I

Overflow when assigning to sc_fixed

if(I<I1 && O_MODE==SC_WRAP) {

if(a>=0) {

if(a.range(W1-1,W1-(I1-I+1))!=0) assert(false);

} else {

if(a.range(W1-1,W1-(I1-I+1))!=sc_biguint<I1-I+1>(-1))

assert(false);

}

}

W

I

W1

I1

W1

I1

W

I
I1-I

If non-zero, overflow occurs
I1-I+1 >= 2

I1-I+1

W1

I1

W

I
I1-I

If not all1, overflow occurs
I1-I+1 >= 2

I1-I+1

a >= 0 a < 0

Special cases

• I > W or I1 > W1

• I < 0 or I1 < 0

– No overflow possible, as no non-fractional part

• Singularity for sc_fixed, I1 == 1 and I == 0
(only sign bit)

sc_fixed<1,1> a; // W1=1, I1=1, a is 0 or -1

sc_fixed<1,0> b; // W=1, I=0, b is 0 or -0.5

b = a; // If a is -1, OVERFLOW occurs

SystemC Imposes Code Structure
Can Lead to Hard-to-Verify Issues

Classic SystemC coding issues

• Lack of X state hides potential instability

• Write-write-race between threads

• Arithmetic overflow on data path

• Hard to verify algorithm versus spec

• Port-size mismatch at interface

• Array-out-of-bounds access on buffer

• Dead code and unreachable FSM states

• Packet loss on data transfer

Initialization

• SystemC has (due to it’s mother language C++) automatic
initialization

– But: Synthesis semantics specifies that initializations from module constructor shall be ignored

– This leads to simulation-synthesis mismatches

– Why not make this explicit by adding a template parameter to at least sc_out/sc_signal
specifying that a random value should be used for initialization

– This makes missing initialization problems visible much earlier in the verification flow which are
currently difficult to catch

• Proposal:
– Add a template parameter to sc_out, sc_signal specifying the reset behavior

– The default for this parameter shall be the current behavior

– Add sc_signal_inout_if::write registering a write

– Add sc_signal_inout_if::read delivering a random value before the first write if the
reset behavior is set to synthesis semantics

Arrays

• SystemC has out-of-bounds checking for bit vectors, sc_(u)_int, …

– But for vectors, good old C-arrays must be used

• In C++ Software development, C-Arrays are superseded by std::vector

• Std::vector is dynamic, thus not suitable for hardware

• bounds checking is available – either by using .at() or by optional debugging code

• Why no sc_array class ?
– Same interface as C-Arrays

– (Optional) Bounds checking

– Would make hard to find out-of-bounds errors much
easier to find

– In-line with other sc_* classes doing bounds checking

– Operator [] asserts on OOB

– Function at throws exception on OOB

Summary
A Path of SystemC Discovery

• HLS language issues restricting proliferation

• SystemC verification issues driving indirect, post-
synthesis verification
– Eliminates many of the advantages of HLS

• A few enhancements could make a difference
– Proprietary code
– Coding restrictions
– Algorithmic design

