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Goals

• Truly parallel simulation of SystemC models
– High speed due to parallel execution on multi/many core hosts

– Compliant to the IEEE 1666 standard

• Identify the main obstacles in the way
of standard-compliant parallel SystemC
– And propose potential solutions

• Technical review and evaluation of
– Standard SystemC® Language Reference Manual

• IEEE Std 1666™-2011 (Revision of IEEE Std 1666-2005)

– Accellera open source proof-of-concept library (v2.3.1)

 Warning: Controversial Content Ahead!
– Evolve SystemC to true parallelism (major revision)

– Let's have a good discussion!
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Discrete Event Simulation (DES)
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– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Sequential Reference Simulator
– SystemC standard IEEE 1666-2011

 A single thread is active at any time

 Cannot exploit parallelism

 Cannot utilize multiple cores
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Parallel Discrete Event Simulation (PDES)
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– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee
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Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.
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Parallel Discrete Event Simulation (PDES)
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– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

 SystemC LRM Requirement:
“The scheduler is not pre-emptive.”

 SystemC: guaranteed safe!

 PDES: not safe! (race condition)

int x;  // global variable

void thread1()      void thread42()
{ x = 0;            { x = 7;
x = x + 1;          x = x * 6;
cout << x;          cout << x;

}                   }

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Process instances at the same time (t,δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming
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Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.
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Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES)  is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 The general notion of shared state needs attention…
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[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES)  is presumed

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 The general notion of shared state needs attention

 Special consideration for very strict semantics, e.g. debugging:
Quote from IEEE 1666-2011, Section “4.2.1.2 Evaluation phase” (page 17):

 Strict DES can remain valid as a special case of PDES
While PDES typically runs up to n threads in parallel,

where n = number of cores on the host,
we can set n = 1 to mimic the classic DES case
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The order in which process instances are selected from the set of runnable processes is
implementation defined. However, if a specific version of a specific implementation runs
a specific application using a specific input data set, the order of process execution shall
not vary from run to run.
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Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121
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[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2];      // Array of 10-bit integers
[...]

Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
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[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.
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template <class T> inline
void sc_fifo<T>::write( const T& val_ )
{

while( num_free() == 0 ) {
sc_core::wait( m_data_read_event );

}
m_num_written ++;
buf_write( val_ );
request_update();

}

Obstacle 4: Class sc_channel

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)

 Q: Why do we need channels? A: Thread safe communication!
– Example: Blocking write in primitive channel sc_fifo.h

Race condition between num_free and m_num_written

 Prevented by locking m_mutex of this channel instance

– Channel acts as a monitor for multi-thread safe communication
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template <class T> inline
void sc_fifo<T>::write( const T& val_ )
{ sc_stacked_lock l(m_mutex);  // lock the channel mutex

while( num_free() == 0 ) {
sc_core::wait( m_data_read_event );

}
m_num_written ++;
buf_write( val_ );
request_update();

}

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

Obstacle 5: TLM-2.0
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• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

Obstacle 5: TLM-2.0
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• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0
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sc_channel
tlm_bw_transport<>

sc_channel
tlm_fw_transport<>

Channels encapsulate communication on fw and bw paths

Connected by Channels
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Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, eliminate SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))
• Synchronize, communicate through events and channels
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Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES is one solution (fully automatic, accurate)
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Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.
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Concluding Remarks

• Towards standard-compliant parallel SystemC
– Higher simulation speed on multi/many core hosts

• Overcome the identified IEEE 1666-2011 obstacles
– Move up from DES to PDES

– Adopt a parallel mindset, expose and exploit parallelism

– Apply the principle of separation of concerns
• Modules encapsulate computation

• Channels encapsulate communication

– Simulate models faster with parallel execution semantics

 SystemC must evolve in a major revision (3.x)
– C++11 already has built-in support for multithreading

– SystemC must embrace true parallelism
• Otherwise it will go down the same path as the dinosaurs…
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