
Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 1

Seven Obstacles in the Way
of Parallel SystemC Simulation

SystemC Evolution Day 2016, Munich, Germany

Thoughts on the next generation of SystemC

Rainer Dömer
doemer@uci.edu

Center for Embedded and Cyber-Physical Systems

University of California, Irvine

Presentation Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright
permission is granted by Rainer Doemer (CECS)
to use this material in developing all future revisions
and editions of the resulting draft and approved
Accellera Systems Initiative SystemC standard, and
in derivative works based on this standard.

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 2

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 2

Goals

• Truly parallel simulation of SystemC models
– High speed due to parallel execution on multi/many core hosts

– Compliant to the IEEE 1666 standard

• Identify the main obstacles in the way
of standard-compliant parallel SystemC
– And propose potential solutions

• Technical review and evaluation of
– Standard SystemC® Language Reference Manual

• IEEE Std 1666™-2011 (Revision of IEEE Std 1666-2005)

– Accellera open source proof-of-concept library (v2.3.1)

 Warning: Controversial Content Ahead!
– Evolve SystemC to true parallelism (major revision)

– Let's have a good discussion!

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 3

!

Discrete Event Simulation (DES)

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 4

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Traditional DES

– Concurrent threads of execution

– Managed by a central scheduler

– Driven by events and time advances
• Delta-cycle

• Time-cycle

 Partial temporal order with barriers

• Sequential Reference Simulator
– SystemC standard IEEE 1666-2011

 A single thread is active at any time

 Cannot exploit parallelism

 Cannot utilize multiple cores

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 3

Parallel Discrete Event Simulation (PDES)

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 5

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 6

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 4

Parallel Discrete Event Simulation (PDES)

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 7

10:0
10:1

10:2

20:1
20:0

20:2

30:0

0:0
T:Δth4th2 th3th1• Parallel DES

– Threads execute in parallel iff
• in the same delta cycle, and

• in the same time cycle

 Significant speed up!

 SystemC LRM Requirement:
“The scheduler is not pre-emptive.”

 SystemC: guaranteed safe!

 PDES: not safe! (race condition)

int x; // global variable

void thread1() void thread42()
{ x = 0; { x = 7;
x = x + 1; x = x * 6;
cout << x; cout << x;

} }

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Process instances at the same time (t,δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 8

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 5

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 The general notion of shared state needs attention…

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 9

[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 The general notion of shared state needs attention

 Special consideration for very strict semantics, e.g. debugging:
Quote from IEEE 1666-2011, Section “4.2.1.2 Evaluation phase” (page 17):

 Strict DES can remain valid as a special case of PDES
While PDES typically runs up to n threads in parallel,

where n = number of cores on the host,
we can set n = 1 to mimic the classic DES case

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 10

The order in which process instances are selected from the set of runnable processes is
implementation defined. However, if a specific version of a specific implementation runs
a specific application using a specific input data set, the order of process execution shall
not vary from run to run.

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 6

Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 11

[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2]; // Array of 10-bit integers
[...]

Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 12

[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 7

template <class T> inline
void sc_fifo<T>::write(const T& val_)
{

while(num_free() == 0) {
sc_core::wait(m_data_read_event);

}
m_num_written ++;
buf_write(val_);
request_update();

}

Obstacle 4: Class sc_channel

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)

 Q: Why do we need channels? A: Thread safe communication!
– Example: Blocking write in primitive channel sc_fifo.h

Race condition between num_free and m_num_written

 Prevented by locking m_mutex of this channel instance

– Channel acts as a monitor for multi-thread safe communication

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 13

template <class T> inline
void sc_fifo<T>::write(const T& val_)
{ sc_stacked_lock l(m_mutex); // lock the channel mutex

while(num_free() == 0) {
sc_core::wait(m_data_read_event);

}
m_num_written ++;
buf_write(val_);
request_update();

}

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

Obstacle 5: TLM-2.0

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 14

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 8

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

Obstacle 5: TLM-2.0

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 15

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 16

sc_channel
tlm_bw_transport<>

sc_channel
tlm_fw_transport<>

Channels encapsulate communication on fw and bw paths

Connected by Channels

U
p

g
ra

d
ed

 b
y

R
ai

n
er

 D
o

em
er

(C
E

C
S

).

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 9

Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, eliminate SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))
• Synchronize, communicate through events and channels

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 17

Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES is one solution (fully automatic, accurate)

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 18

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.

Seven Obstacles in the Way of Parallel SystemC Simulation SystemC Evolution Day, Munich,
May 2, 2016

(c) 2016 R. Doemer, CECS 10

Concluding Remarks

• Towards standard-compliant parallel SystemC
– Higher simulation speed on multi/many core hosts

• Overcome the identified IEEE 1666-2011 obstacles
– Move up from DES to PDES

– Adopt a parallel mindset, expose and exploit parallelism

– Apply the principle of separation of concerns
• Modules encapsulate computation

• Channels encapsulate communication

– Simulate models faster with parallel execution semantics

 SystemC must evolve in a major revision (3.x)
– C++11 already has built-in support for multithreading

– SystemC must embrace true parallelism
• Otherwise it will go down the same path as the dinosaurs…

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 19

Acknowledgments

• For helpful input, fruitful discussions, and honest feedback,
I would like to thank:

– Tim Schmidt

– Guantao Liu

– Desmond Kirkpatrick

– Abhijit Davare

– Ajit Dingankar

– Philipp Hartmann

– and all participants in the SystemC Evolution Day 2016
• …for not kicking me off the stage! 

Seven Obstacles in the Way of Parallel SystemC Simulation (c) 2016 R. Doemer, CECS 20

