
TLM Events
Making Temporal Decoupling Work

Dr. Jakob Engblom
System Simulation Center (SSC)

Intel
Stockholm, Sweden

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by Intel to use this material in
developing all future revisions and editions of the resulting
draft and approved Accellera Systems Initiative SystemC
standard, and in derivative works based on this standard.

Why TLM?
• Performance and ease and speed of modeling

• Communicate the what, not the how
– Focus on the essential contents of the communication, not how the information is encoded or

transported in the hardware
– Implement what a device does, not how it does it in hardware

• Communication in a single step
– Less scheduling per communication
– Do not play out bus protocols

• Simpler models
– No need to deal with protocols and cycles, just get a function call and do the work!

• Only consume processor resources when there is work to be done
– TLM models are not clocked or polling; they are event-driven and reactive

• SystemC: Avoid getting the kernel involved
– SC_Method + temporal decoupling
– Topic of the day!
– (Less of an issue in other simulation frameworks built with different semantics)

© Accellera Systems Initiative 4

SystemC TLM-2.0 Temporal
Decoupling: a bit Vague

• TLM-2.0 design:
– Keep the single kernel time of traditional SystemC
– Selected parts of simulation can be allowed to virtually run

ahead (temporal decoupling), creating a “local” time
– Implicitly, at the end of the quantum, run the kernel

• This triggers queued kernel events, signals, etc.
• Get global and “local” times in sync

• What happens when units communicate – and when?
– Easiest solution: all communications happen at end of quantum,

which is true for everything facilitated by the kernel
– But TLM does not need the kernel, since TLM is a function call
– Thus, TLM implies communication without involving the

SystemC kernel – which is a large part of the point of TLM-
SystemC

© Accellera Systems Initiative 5

6

Example (Highly Simplified)

Processor
A

Processor B

Active, runs
in Quantum

PIC A

Active, runs
in Quantum

Timer T

Bus

RAM

PIC B

Interrupt line
Passive
device

7

The Device Activation Time Issue

A B kernel

0 999 0 999 0 999

A

1000

TLM function call: Hey timer,

I set you to count 100 cycles

and interrupt me then!

Timer T

When does the timer get back to A?

• At time 200 in the first time slice for A?

• At time 1000, at the start of the next slice for A?

• At time 1200, in the middle of the next slice for A?

• Other?

100

This comes down to the question of what time domain Timer T

is operating in.

• Is it in the kernel’s domain?

• Should we associate it to a processor, such as A?

• I think we need clearer rules for how to deal with this

The Standard

”For example, consider the simulation of a system consisting of a
processor, a memory, a timer, and some slow external
peripherals. The software running on the processor spends most
of its time fetching and executing instructions from system
memory, and only interacts with the rest of the system when it is
interrupted by the timer, say every 1 ms. The ISS that models the
processor could be permitted to run ahead of SystemC simulation
time with a quantum of up to 1 ms, making direct accesses to the
memory model, but only synchronizing with the peripheral
models at the rate of timer interrupts.”

– I.e., sound like the timer will call back in the kernel’s time slice

– But this is just an example

– And the assumption that peripherals are ”slow” is not universally true

8

The Standard – LT Style
“A loosely-timed model can also benefit from explicit
synchronization in order to guarantee deterministic execution,
but a loosely-timed model is able to make progress even in the
absence of explicit synchronization points (calls to wait), because
each initiator will only run ahead as far as the end of the time
quantum before yielding control. A loosely-timed model can
increase its timing accuracy by using synchronization on-
demand, that is, yielding control to the scheduler before
reaching the end of the time quantum.”

– This seems to say that we might end our quantum as soon as we do a
device access, which sounds rather inefficient, and is not what
happens in practice in most models I have seen

– It is not clear if a TLM function call to another device is a
”synchronization” in the language of this standard

9

The Standard – Quantum Keeper
a) For maximum simulation speed, all initiators should use temporal
decoupling, and the number of other runnable SystemC processes
should be zero or minimized.
b) In an ideal scenario, the only runnable SystemC processes will belong
to temporally decoupled initiators, and each process will run ahead to
the end of its time quantum before yielding to the SystemC kernel.
c) A temporally decoupled initiator is not obliged to use a time
quantum if communication with other processes is explicitly
synchronized. Where a time quantum is used, it should be chosen to
be less than the typical communication interval between initiators;
otherwise, important process interactions may be lost, and the model
may be broken.

– Point c puts a really low limit on the length of a quantum: in our example,
it means that a quantum > 100 is disallowed. For maximum performance,
our experience is that you need a quantum of 100k cycles or more.

10

PROPOSAL: TLM EVENT

Time, Data, Interrupts

11

“TLM Events”: Time Management

• Allow passive device models (targets) to request callback
from active objects (initiators)
– Devices are not threads, but purely reactive (as they should be)

– Model asks initiator to “please get me a callback in N cycles”

– Initiator would be responsible for getting the callback to happen

– As an adjunct, need to allow passive devices to query the time
of the active object they work with

• Initiator can implement timed callbacks however it likes
– Manage its own queue of timed events, and fire them off

precisely (i.e., call back at time 200 in our example)

– Fall back to kernel

– We cannot reasonably standardize this aspect

12

13

TLM Events: Time: How it would work

A

0 999

(tA = 100) A to T: Hey timer, I set you to count

100 cycles and interrupt me then!

T

100
(tA = 100) T to A: Sure, here is an event that

asks you to give me a callback 100 cycles

from now

Function call

Function call return

100

(tA = 100) T returns to A, finishing the TLM

transaction in the device. Still at time 100.

T

200

(tA = 200) A calls T, since time is now 200. T

gets a callback, and uses that to trigger an

interrupt.

PIC

(tA = 200) T calls the PIC model over a TLM

interrupt or signal interface

(tA = 200) PIC calls A over a TLM interrupt.

Processor notes it has to take an interrupt

following the current event.

200

Software jumps to

interrupt handler

Time: Delbergue et al DVCon 2016
• Proposes having initiators expose a ”Quantum Keeper API”

– The name is a bit unfortunate, since it is a local time API, not an API to
manage time quanta between active objects – but it is what TLM-2.0 says

• Makes sure targets can query time, etc, in addition to posting

© Accellera Systems Initiative 14

TLM Events: Active and Passive Objects

© Accellera Systems Initiative 15

Active objects
When you need time,
or post a TLM event,
call an active object

All objects in a simulation

Small subset of all
objects will be active
and provide time. They
will be temporally
decoupled for speed.

Most objects should be
passive and not drive
time, but rather just use
TLM events to be event-
driven.

TLM Events: Data

• Another aspect of event-driven modeling in TLM is that
you often want to store data in events to know just what
to do

– Rather than registering tons of event types or having some kind
of internal buffer memory in your device

• The TLM Event that a target posts to an initiator must
carry a target-defined payload that will help the target
make sense of the event when the callback comes

– TLM-2.0 Payload Queue solves a similar problem, but in this
case we have finished the memory operation so it is not
applicable

16

Data: Haetzer & Radetzki FDL 2013

• Nice solution to extend current TLM events with data

• Something like this is needed in a TLM Event

© Accellera Systems Initiative 17

TLM Events: Interrupts / Signals

• This is a realization, post-submission, that I could not do
events without talking interrupts/signals

• As an adjunct to the TLM Events, we absolutely need
TLM interrupts or signals
– A way to call from one model to another within a time slice,

without involving the kernel or ending the time slice

– TLM-2.0 Memory-Mapped Bus is overkill, and also has
response-reply semantics which is unnecessary

– A unidirectional TLM signal is needed
• Probably carrying data to allow modeling of signal buses or signals

with data attached (not just a single line)

• Might have bus/router/mux objects to implement many-to-one and
one-to-many semantics

© Accellera Systems Initiative 18

QUESTIONS?
COMMENTS?

© Accellera Systems Initiative 19

