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C++ Language Development

New C++ Standards C++11 and C++14
C++ = Modern C++

C++11

— Many new features and improvements

C++14
— Slight improvements and fixes for C++11

Both fully backwards compatible
— (except auto storage class specifier)
a@ Kistemc
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Modern C++

* Improved productivity
— auto; lambdas; range-based for; ...
* |mproved readability/maintainability
— User defined literals; nullptr; inline member initialisation; ...
* Improved safety
— Strongly typed enums; delete, default, override, final, ...
— shared_ptr, unique_ptr, ...
New features

— Variadic templates; constexpr; multi-thread + memory model;
RValue reference and move; ...

— Better software quality, performance and safety
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C++ Basis for SystemC

SystemC LRM (IEEE 1666-2011):

“I..

y

This standard shall be used in conjunction with the

fol

[...]

9

owing publications:
SO/IEC 14882:2003, Programming Languages—C++

”

Combination of SystemC and Modern C++?
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Modern C++ and SystemC?

Question:

How can ...
- SystemC and TLM designers and
- Methodology library providers

... benefit from Modern C++?
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Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis
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Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis
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Example: Auto und range-based for

for ( sc core::sc vector<

SC_core::sc _export <
sc core::sc signal out 1f<int> > >::iterator

it = status v .begin();
it < status v .end();
++it ) |

for ( auto&& it : status v ) {

l SYSTEMC
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Example: Inline initialization and
Lambda

SC MODULE (adder)

{
sc_in<uint8 t> a{"a"}, b{"b"};
sc out<sc ulnt<9%> > sum{"sum"};
SC CTOR (adder)
{
auto ph =
sc spawn([&] () { for(;;){ wait(alb); sum = a + b }});

Thanks to Roman Popov and David Black
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Modern C++ for Modelling

* Allow designer to use Modern C++
* |n principle no problem
 Depends on compiler used

e Limited interoperability
— Compiler versions in EDA tools

* |s this true?
* Any hidden traps?
* Should we force support via IEEE 16667?
3@ mc
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Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and API extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis
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Example: std::initializer_list in

sc_vector
e Additional Constructor for sc_vector

template < typename T >
class sc vector : //...

{

sc vector( std::initializer 1list< T* > elements );

//

* |nitialization with list of element pointers

sc _core::sc vector< my mod t > v =
{ new my mod t("ab"), new my mod t("cd,, 1)
, new my mod t("ef", 11, 22) };
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Example: Simplified Syntax for Thread
Creation with Lambda

#define ASSIGN (sensitive,equation) \
assigns.push back(sc spawn( \
[&]1 () { for(;;){ wait(sensitive); equation }})

ASSIGN( a siglb sig, y sig = a sig + b sig; );
ASSIGN( clk.pos(), y sig = a sig + b sig; );

// sc method ( sensitivity list , process handle )
sc_method sum ( {a,b,c} , [&]() { sum=a + b + ¢c; } };)’,

Thanks to David Black and Roman Popov
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Example: Inline binding

#define SC CTOR (user module name) \
typedef std::function<void(user mod n& self)> bind f t; \
typedef user mod n SC CURRENT USER MODULE; \
user mod n (sc module name, bind f t bindf= 0) \
{ 1f (bindf) { bindf (*this); }
#define BIND INST (module type) \
[&] (module typeé& 1)

SC MODULE (adder test)
{
sc_signal<uint8 t> a{"a"}, b{"b"};

adder add inst{"add inst", BIND INST (adder) i
{ i.a(a); 1.b(b); i.sum(sum); }}, 1

Thanks to Roman Popov
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Example: Move for SystemC Objects

* Implement move semantics for SystemC objects

* Allows much more freedom in handling non-
copyable objects

* Requires some discussion about semantics

class sc object {

// Move COnstructor
sc_object( sc objecté&& );
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Examples: User Defined Literals

e Literals for sc_time, ...

sc_time operator"" ns(int t) // user defined
{ return sc time(t,SC NS); }

wait (10.5 ns);
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Modern C++ for Standard and API
Extensions

* Forces compiler support for C++14 for all SystemC
— In EDA tools?

e Reference to ISO C++14 Standard in IEEE 16667

How to handle older compilers?
— Opt-Out of Modern C++ features?

— Recommend SystemC 2.37

* Most important APl extensions?
— Proposals welcome as soon as questions above are solved
— Discussion in LWG and Accellera Forum
Aistenc
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Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis
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Modern C++ for PoC library

implementation

* Allow Modern C++ for implementation of future
SystemC library elements (not API relevant)?

e Refactoring of SystemC library?
— auto, range-based for, ...
— Add overrides, final, delete, ...
— Generic smart pointers
— Multi-threading

* Requires Modern C++ compiler support for all SystemC
— No Opt-Out possible
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Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis
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Modern C++ for Synthesis

e Extension of Synthesis Subset for Modern C++

* Draft available in SystemC SWG
— sc_vector, std::array, ...
— constexpr
— User-defined literals, binary literals

* Synthesis Subset “beyond” SystemC Standard?
3@ mc
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Compiler Overview for C++14

* GCC:
— Starts with GCC4.4
— Most C++11 features in GCC 4.7
— Most C++14 features in GCC 4.9
* Relaxed constexprin GCC5.0
 Clang
— Many features in Clang 2.9 (e.g. auto)
— Most features in Clang 3.1 (e.g. lambda)
— All features in Clang 3.3

e MS Visual C++
— Starts with MSVC 2010
— Most features in MSVC 2013
— Nearly all in MSVC 2015
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