SystemC/TLM and Language
Standards (C++11/14)

Ralph Gérgen, OFFIS

ll SYSTEMC
dcceinera
© Accellera Systems Initiative 5;_@ LUTION DAY

SYSTEMS INITIATIVE 3,2016 | MUNICH | GERMANY

Presentation Copyright Permission

— A non-exclusive, irrevocable, royalty-free copyright
permission is granted by OFFIS e.V. to use this material in
developing all future revisions and editions of the resulting
draft and approved Accellera Systems Initiative SystemC
standard, and in derivative works based on this standard.

EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

e stiinc
accellera

SYSTEMS INITIATIVE

C++ Language Development

New C++ Standards C++11 and C++14
C++ = Modern C++

C++11

— Many new features and improvements

C++14
— Slight improvements and fixes for C++11

Both fully backwards compatible
— (except auto storage class specifier)
a@ Kistemc

© Accellera Systems Initiative 3 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

Modern C++

* Improved productivity
— auto; lambdas; range-based for; ...
* |mproved readability/maintainability
— User defined literals; nullptr; inline member initialisation; ...
* Improved safety
— Strongly typed enums; delete, default, override, final, ...
— shared_ptr, unique_ptr, ...
New features

— Variadic templates; constexpr; multi-thread + memory model;
RValue reference and move; ...

— Better software quality, performance and safety

e stiinc
accellera

© Accellera Systems Initiative 4 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

C++ Basis for SystemC

SystemC LRM (IEEE 1666-2011):

“I..

y

This standard shall be used in conjunction with the

fol

[...]

9

owing publications:
SO/IEC 14882:2003, Programming Languages—C++

”

Combination of SystemC and Modern C++?

e stiinc
accellera

© Accellera Systems Initiative 5 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

Modern C++ and SystemC?

Question:

How can ...
- SystemC and TLM designers and
- Methodology library providers

... benefit from Modern C++?

Ji Kestenc
dccerlnera o
© Accellera Systems Initiative 6 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis

Ji Kestenc
dccerlnera .

© Accellera Systems Initiative 7 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY

SYSTEMS INITIATIVE

Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis

Ji Kestenc
dccerlnera .
© Accellera Systems Initiative 8 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Example: Auto und range-based for

for (sc core::sc vector<

SC_core::sc _export <
sc core::sc signal out 1f<int> > >::iterator

it = status v .begin();
it < status v .end();
++it) |

for (auto&& it : status v) {

l SYSTEMC
accellera .

© Accellera Systems Initiative 9 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY

SYSTEMS INITIATIVE !

Example: Inline initialization and
Lambda

SC MODULE (adder)

{
sc_in<uint8 t> a{"a"}, b{"b"};
sc out<sc ulnt<9%> > sum{"sum"};
SC CTOR (adder)
{
auto ph =
sc spawn([&] () { for(;;){ wait(alb); sum = a + b }});

Thanks to Roman Popov and David Black

e stiinc
accellera

© Accellera Systems Initiative 10 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Modern C++ for Modelling

* Allow designer to use Modern C++
* |n principle no problem
 Depends on compiler used

e Limited interoperability
— Compiler versions in EDA tools

* |s this true?
* Any hidden traps?
* Should we force support via IEEE 16667?
3@ mc

© Accellera Systems Initiative 11 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and API extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis

Ji Kestenc
dccerlnera .

© Accellera Systems Initiative 12 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY

SYSTEMS INITIATIVE

Example: std::initializer_list in

sc_vector
e Additional Constructor for sc_vector

template < typename T >
class sc vector : //...

{

sc vector(std::initializer 1list< T* > elements);

//

* |nitialization with list of element pointers

sc _core::sc vector< my mod t > v =
{ new my mod t("ab"), new my mod t("cd,, 1)
, new my mod t("ef", 11, 22) };

e stiinc
accellera

© Accellera Systems Initiative 13 EVOLUTION DAY
MAY 3, 2

2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Example: Simplified Syntax for Thread
Creation with Lambda

#define ASSIGN (sensitive,equation) \
assigns.push back(sc spawn(\
[&]1 () { for(;;){ wait(sensitive); equation }})

ASSIGN(a siglb sig, y sig = a sig + b sig;);
ASSIGN(clk.pos(), y sig = a sig + b sig;);

// sc method (sensitivity list , process handle)
sc_method sum ({a,b,c} , [&]() { sum=a + b + ¢c; } };)’,

Thanks to David Black and Roman Popov

e stiinc
accellera

© Accellera Systems Initiative 14 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Example: Inline binding

#define SC CTOR (user module name) \
typedef std::function<void(user mod n& self)> bind f t; \
typedef user mod n SC CURRENT USER MODULE; \
user mod n (sc module name, bind f t bindf= 0) \
{ 1f (bindf) { bindf (*this); }
#define BIND INST (module type) \
[&] (module typeé& 1)

SC MODULE (adder test)
{
sc_signal<uint8 t> a{"a"}, b{"b"};

adder add inst{"add inst", BIND INST (adder) i
{ i.a(a); 1.b(b); i.sum(sum); }}, 1

Thanks to Roman Popov

e stiinc
accellera

© Accellera Systems Initiative 15 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY

SYSTEMS INITIATIVE

Example: Move for SystemC Objects

* Implement move semantics for SystemC objects

* Allows much more freedom in handling non-
copyable objects

* Requires some discussion about semantics

class sc object {

// Move COnstructor
sc_object(sc objecté&&);

e stiinc
accellera

© Accellera Systems Initiative 16 EVOLUTION DAY
MAY 3, 2

2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Examples: User Defined Literals

e Literals for sc_time, ...

sc_time operator"" ns(int t) // user defined
{ return sc time(t,SC NS); }

wait (10.5 ns);

e stiinc
accellera

© Accellera Systems Initiative 17 EVOLUTION DAY
MAY 3, 2

2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

Modern C++ for Standard and API
Extensions

* Forces compiler support for C++14 for all SystemC
— In EDA tools?

e Reference to ISO C++14 Standard in IEEE 16667

How to handle older compilers?
— Opt-Out of Modern C++ features?

— Recommend SystemC 2.37

* Most important APl extensions?
— Proposals welcome as soon as questions above are solved
— Discussion in LWG and Accellera Forum
Aistenc

© Accellera Systems Initiative 18 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis

Ji Kestenc
dccerlnera .

© Accellera Systems Initiative 19 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY

SYSTEMS INITIATIVE

Modern C++ for PoC library

implementation

* Allow Modern C++ for implementation of future
SystemC library elements (not API relevant)?

e Refactoring of SystemC library?
— auto, range-based for, ...
— Add overrides, final, delete, ...
— Generic smart pointers
— Multi-threading

* Requires Modern C++ compiler support for all SystemC
— No Opt-Out possible

© Accellera Systems Initiative 20 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

e stiinc
accellera

Modern C++ and SystemC

Modern C++ for modelling

Modern C++ for standard and APl extensions

Modern C++ for PoC library implementation

Modern C++ for synthesis

Ji Kestenc
dccerlnera .

© Accellera Systems Initiative 21 EVOLUTION DAY

MAY 3,2016 | MUNICH | GERMANY

SYSTEMS INITIATIVE

Modern C++ for Synthesis

e Extension of Synthesis Subset for Modern C++

* Draft available in SystemC SWG
— sc_vector, std::array, ...
— constexpr
— User-defined literals, binary literals

* Synthesis Subset “beyond” SystemC Standard?
3@ mc

© Accellera Systems Initiative 22 EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

Compiler Overview for C++14

* GCC:
— Starts with GCC4.4
— Most C++11 features in GCC 4.7
— Most C++14 features in GCC 4.9
* Relaxed constexprin GCC5.0
 Clang
— Many features in Clang 2.9 (e.g. auto)
— Most features in Clang 3.1 (e.g. lambda)
— All features in Clang 3.3

e MS Visual C++
— Starts with MSVC 2010
— Most features in MSVC 2013
— Nearly all in MSVC 2015

3008//9[’3 © Accellera Systems Initiative 23

SYSTEMS INITIATIVE

SYSTEMC

EVOLUTION DAY
MAY 3,2016 | MUNICH | GERMANY

References

e What C++011 means to SystemC?
— David Black, NASCUG 2012
— http://nascug.org/events/17th/black cppll 2 27 2012.pdf

* Problems with SystemC syntax

— Roman Popov, Accellera Forum

— forums.accellera.org/topic/5472-problems-with-systemc-
syntax-improvment-request

e stiinc
accellera

© Accellera Systems Initiative 24 EVOLUTION DAY
MAY 3, 2

3,2016 | MUNICH | GERMANY
SYSTEMS INITIATIVE

http://nascug.org/events/17th/black_cpp11_2_27_2012.pdf
forums.accellera.org/topic/5472-problems-with-systemc-syntax-improvment-request

