
Multi-Threaded SystemC and
external interfaces

Session 1.2

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by GreenSocs to use this material in
developing all future revisions and editions of the resulting
draft and approved Accellera Systems Initiative SystemC
standard, and in derivative works based on this standard.

Enabling System Level Design 3

Multi-threaded?

• There are two approaches to multi-threading:

1. Fine Grained Parallel SystemC Execution, as discussed

this morning.

2. Course Grained multi-threading:

• Putting one or more sub-systems into a separate host

thread.

• Or – combining several simulation kernels.

• First issue – Synchronizing between simulation kernels

Enabling System Level Design 4

Inter-Simulation Synchronization

“Asynchronous Wait”

Guillaume Delbergue

And

Mark Burton

Enabling System Level Design 5

Existing SystemC Constructs

• async_request_update provides a mechanism to notify a

SystemC event in a thread safe manner.

• Member function async_request_update shall cause the scheduler to

queue an update request for the current primitive channel in a thread-

safe manner with respect to the host operating system. The intent of

async_request_update is that it may be called reliably from an

operating system thread other than those in which the SystemC kernel

and any SystemC thread processes are executing.

• We have a way to inject async events, but we don’t have a

way to ‘wait’ for async events.

Enabling System Level Design 6

Waiting for an async event

• We don’t know when the event will arrive, We don’t know how

much ‘simulation time’ should pass.

• Events may trigger other activity, if you are waiting for an

async event, you may run out of normal events, but the

simulation is not over !

• Hence two additional semantics:

1. When you are waiting for an async event, do not

advance simulation time.

2. When you are waiting for an async event, do not

stop the simulation if you run out of (normal)

events.

Enabling System Level Design 7

Asynchronicity

• Asynchronicity is a property of an event.

• But, then you may want to asynchronously wait for a time

• We propose to add a time class : sc_async_time

• All functions (wait, notify) have the normal semantics, with the

additional semantic rules for async events.

• (you can do all of this with an async function, rather than

events, but when you ‘async_wait’ for a list of events, you

‘taint them all’ as asynchronous, which is maybe not what you

want)

Enabling System Level Design 8

Additional functions

• N.B. Wait(event, time) has the semantic of waiting for events (the logical

combination of an event list), or the time.

• We would like a semantic that says “At this point in the simulation, I would

like to sync with an external simulator”

• I may have to process events at this time, but I should not advance time while I

wait for the other simulator to sync.

• Hence we could have :

• While (not_in_sync) { wait(async_sync_event, 0); }

• BUT this will consume 100% of CPU as we spin waiting

• Ideally we would like to say

• Wait(time t AND async event e)

• meaning “wait for the condition to be true that time is t AND

the event e has fired”.

• In order to achieve this, clearly the kernel would have to pause time at ‘t’

waiting for the event.

• But that is not the meaning of ‘and’ in the context of events. The ‘AND’ construct means

wait for both events to have happened, time could move on.

Enabling System Level Design 9

Many choices

• A ‘true and’ wait (wait time and event (list).

• Ignore the issue (burn more trees)

• Add new semantics to something else (e.g. sc_pause…)

• A totally new function

• We propose sync_async(time, async_event)…

• Sync_async means ‘wait until the time and the async event

occurs’ (which means the kernel may have to pause, waiting

for the event, if it has already reached the time).

• It is only defined for async events.

• cleaner than ‘overloading’ wait, though it seems a pitty.

Enabling System Level Design 10

Wait, sync, async, time….

Sc_time Sc_async_time Sc_event Sc_async_event

Wait Normal wait

Do not advance time,

exit at time, (simulation

may end).

Normal wait

wait for the event to

happen, time may

advance, the

simulation should not

end

Sync_async n/a

wait for the event to

happen (do so

immediately, do not run

more delta cycles)

Nb some debate as to whether wait(0) == wait(async(0)) – you choose!

Enabling System Level Design 11

Wait, sync, async, time….

Sc_event
Sc_async_event

Sc_time Sc_async_time Sc_time Sc_async_time

wait Normal wait

Do not advance time,

exit on event OR time,

(simulation may end).

Normal wait

Do not advance time,

wait for the events to

happen, or for time to

be caused by other

events to be reached

Sync_async n/a

Wait for both the time

and the event. If the

event doesn’t arrive by

time, then simulation

should wait for the

event (executing any

delta cycles as

appropriate). If the

event arrives before

time, then allow

systemc time to

advance to time.

Wait for both the time

and the event. If the

event doesn’t arrive by

time, then simulation

should wait for the

event (executing any

delta cycles as

appropriate), If the

event arrives before

time, wait until time

(the simulation may

end)

Enabling System Level Design 12

results

• We are able to simply sync between two systemc’s running in

different threads.

• Each kernel runs a small system, using ‘quantums’

• At the end of each quantum, the two kernels ‘sync’ using an

async event.

• For each kernel, there are two possibilities, either they have

already reached the end of their quantum, and wait for the

other to catch up, or they receive the other kernels notification

before they have themselves finished.

• Sync_async (time, async_event) provides exactly that

semantic, waiting for the time (not allowing the kernel to move

forward from that time) and the event to happen.

Enabling System Level Design 13

Summary of proposed changes

• Add new class sc_async_event,

• Two Semantics:

1. Do Not Advance time to this event

2. If there are primitive channels blocking for events of this type,

then don’t stop the simulation.

• Add a new type of ‘wait’ like statement called sync_async

• Semantics :

• Async_sync(time T, event(list)) – wait until both the event has happened and it is

time T. If the event has happened, you must continue to run delta cycles, but you

may not allow time to advance. (Hence on completion, SystemC time will be T, and

the event will have occurred).

• Add a new sc_async_time type.

• Hence it is possible to wait (or notify) a time, with the same async

semantics.

Enabling System Level Design 14

Inter-Simulation communication: TLM + ?

Enabling System Level Design 15

Just TLM2 ?

• TLM 2 certainly helps, BUT

• For LT models - good news, you can play loose with time

(within the quantum).

• So you do not need to sync kernels on each transaction.

• For AT models – Can we have temporal decoupling?

• Theoretically NO

• Theoretically, all cross simulation communication should be sync’d !

• And then – THREAD SAFETY…

Enabling System Level Design 16

Thread swap -tastic

Post to letter box

Async notify,

Other thread (finally) picks up

…

And all the same the other way

Are we happy?

Enabling System Level Design 17

Solutions

• Insist all models are thread safe

• (or handle switching threads themselves)

• (That may also means making sure all SystemC kernel activity is

thread safe!)

• BUT – this could work if we say that is must be the case for models

called from external simulations…?

• Hack-a-day your own solution, if you know the model you are

communicating with is thread-safe – good luck.

• We standardize some mechanism to identify thread safe

models, in all other cases, you must take the pain.

• E.g. using an extension on the tlm-port.

• Or a CCI mechanism

Enabling System Level Design 18

SUMMARY

• For Sync :

• Proposal with code that is a simple addition to SystemC and will enable

sync between simulators

• For communication:

• TLM looks like a good start, but AT will suffer a lot of sync’s, and LT

needs to know when it’s thread-safe.

• (Apart from that, an LT interface looks much like any other remote

function call interface – e.g. RPI)

• [Fill in the gap - a good proposal]

Enabling System Level Design 19

Multi-Threaded SystemC and
external interfaces

Session 1.2

© Accellera Systems Initiative

Summary

• For Sync :
– Proposal with code that is a simple addition to SystemC

and will enable sync between simulators

• For communication:
– TLM looks like a good start, but AT will suffer a lot of sync’s,

and LT needs to know when it’s thread-safe.

– (Apart from that, an LT interface looks much like any other
remote function call interface – e.g. RPI)

• [Fill in the gap - a good proposal]

Summary of proposed changes : Sync

• Add new class sc_async_event,
– Two Semantics:

1. Do Not Advance time to this event
2. If there are primitive channels blocking for events of this type, then don’t

stop the simulation.

• Add a new type of ‘wait’ like statement called sync_async
– Semantics :

• Async_sync(time T, event(list)) – wait until both the event has happened and it
is time T. If the event has happened, you must continue to run delta cycles, but
you may not allow time to advance. (Hence on completion, SystemC time will
be T, and the event will have occurred).

• Add a new sc_async_time type.
– Hence it is possible to wait (or notify) a time, with the same async

semantics.

