
Checkpointing

Jakob Engblom, Håkan Zeffer,
Eric Nilsson, Philipp Hartmann

Intel Sweden & Germany

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright permission is granted by Intel
to use this material in developing all future revisions and editions of the resulting
draft and approved Accellera Systems Initiative SystemC standard, and in
derivative works based on this standard.

CHECKPOINTING BASICS

© Accellera Systems Initiative 3

A: The ability to save the state of

a simulation and later pick up at

the exact same point

4

Q: What is Checkpointing in a
Virtual Platform?

“Save the boot” Parallelize Test execution Undo target actions Save for the day

Gear shifting Report software bugs Report model bugs Reverse Debugging

5

Checkpointing Use Cases

Avoid redoing work, save booted
& configured system for reuse
and distribution

Save checkpoints and spin up
additional parallel simulations
during testing

Get back to a previous good
state after something went
wrong

Save work, shut down
simulation, continue the next
day

Save state from fast VP, open in
a detailed separate model

Save state of system when bug
hits, transfer to SW developer
for analysis

Provide HW + SW state when a
model bug hits to model
developer for analysis

Support the implementation
of reverse debugging
(reproduction-based)

6

Example: Feedback from Automatic Testing

Boot

Test A

P Load and configure

Test B

Test Q

Platform provider

Initial hardware configuration
and platform software load

Software developer

Tester

Platform team provides a basic
checkpoint to all other teams

Test run in parallel on a cluster, in batch
mode, with different inputs to each run,
recording the inputs

R

Q
Stimuli

recording

The developer can replay the
failing result from the
checkpoint

Tester configures the target (hardware
and software) and loads developer
software, resulting in a new checkpoint

Bug hits in some
test run

Test results

Q
Stimuli

recording

Checkpoint and input recording is
attached to the test results, along with
logs and other information

01010101
10000110
00011001

,,,

Checkpoint vs Bug Report – Reproducibility!

https://bugzilla.mozilla.org/show_bug.cgi?id=492885

Try to capture all relevant
aspects of the software
environment…

Provide steps to
reproduce the bug

Pity the developer who tries
to reproduce this

https://bugzilla.mozilla.org/show_bug.cgi?id=492885

Note: Checkpoint Portability is Important
Save checkpoint

Restore to same machine,
same model version Restore to different host machine,

same model version

Restore to same machine,
updated model version (or a
model at a different
abstraction level)

Restore to a different machine,
with a new model version

A checkpoint should be
possible to open...

By any user
On any host
At any location
Using another model version

Note: Repeatability, Determinism, Variability

• For most use cases, repeatability provides great value

– Requires checkpointing + determinism + a way to record inputs

• Determinism vs variability

– Determinism is the key simulator implementation property

– Note that determinism does not preclude variability – just vary the inputs

• Note: Checkpoints and determinism are independent concepts

– A deterministic simulation might not be possible to checkpoint

– A checkpoint might lead to another execution if simulator is not deterministic

9

CHECKPOINTING CORE CONCEPTS

10

11

Core: Implementation State ≠ Checkpoint State

Implementation

Internal model state

Architectural state

Code state

Checkpoint

Architectural state –
implementation-

independent expression

Explicit export
operation

No implementation state

Implementation B

Code state B

Explicit import
operation

Internal model state B

Architectural state

The architectural state is part of the
internal model state. More or less
explicit, depends on the model, the
model can do pretty much anything it
wants to store it.

When opening the checkpoint, the
model state is built from the
architectural state in the checkpoint.
The model state is usually bigger
than the architectural state.

Aspects of Checkpoint State

© Accellera Systems Initiative 12

Simulator core state

Virtual platform structure & configuration

Virtual platform runtime state

The hardware models, how are they connected, static memory maps, buses, clock
trees, …

The current state of the models: memory contents, register values, transactions in
flight, dynamic memory maps, …

The current state of the simulator core: pending events, threads, processes,

Tool state

The tool(s) connected to the virtual platform: Software debug setups, breakpoints,
real-network connections, ...

These two are necessary
for a checkpoint system
to be successful

Structure can be recreated
using other mechanisms
outside of the checkpoint

Tool state should never be
part of a checkpoint

Isolation from Host and Identification of State

© Accellera Systems Initiative 13

VP Model

Internal model state

Architectural state

Code state

Simulator Tool/Environment

Files

Network

Uncontrolled and unsaved outside
world

Virtual platform models must not
depend on the state of anything
outside the simulator to get back
to the same state

Ideally: Handle all real-world
interactions using specialized
modules that isolate the model
from the outside world

Real-world
interface

WIND RIVER® SIMICS®
AS AN EXAMPLE IMPLEMENTATION

(Simics supports all the use cases presented initially)

© Accellera Systems Initiative 14

15

• config[.gz]
– Contains Simics

configuration, paths to
previous, checkpoints,
names of image files, ...

– Compressed by default

• info
– Metadata

• recording
– optional

• session_comments
– optional

• *.craff files for all images

Wind River® Simics®: Checkpoints = Folder

• Captures structure & state &
simulator core state

• Human-editable
– Checkpoint files are plain text files

– Can be edited for fixing &
experiments

• Data stored as Simics attributes
– Key-value pairs

– Similar set of types as CCI
configuration parameters

– Based on Simics object system

Wind River® Simics®: Configuration Files
Example from a DMA controller

OBJECT ubuntu.mb.sb.dma TYPE i8237x2 {
queue: ubuntu.mb.cpu0.core[0][0]
object_id: "obj_0000018183f6616d"
build_id: 0x13f0
memory: ubuntu.mb.nb.pci_mem
current_addr: ((0,0,0,0),(0,0,0,0))
base_addr: ((0,0,0,0),(0,0,0,0))
current_count: ((0,0,0,0),(0,0,0,0))
base_count: ((0,0,0,0),(0,0,0,0))
disabled: (0,0)
mask: ((1,1,1,1),(0,1,1,1))
flip_flop: (0,0)
dec_address: ((0,0,0,0),(0,0,0,0))
auto_init: ((0,0,0,0),(0,0,0,0))
dma_type: ((0,0,0,0),(0,0,0,0))
dma_mode: ((0,0,0,0),(3,0,0,0))
request: ((0,0,0,0),(0,0,0,0))
tc: ((0,0,0,0),(0,0,0,0))
page_addr: ((0,0,0,0),(0,0,0,0))
page_size: (0x10000,0x20000)
extra_page_addr: ((0,0,0,0),(0,0,0,0))

}

Wind River® Simics®: Images handled using diffs

os.craff

Checkpoint 1 Checkpoint 2

disk1.craff

mem.craff

disk1.craff

mem.craff

diff

diff

diff

17

Device state 1 Device state 2

When opening checkpoint 2, Simics uses the
device state from Checkpoint 2 + the
cumulative disk and memory state from the
checkpoint chain

RELATED TECHNOLOGIES

© Accellera Systems Initiative 18

Virtual Machine Snapshots

• VMWare*, Virtualbox*, etc. “snapshots” are
equivalent to checkpoints

– (Mostly) portable

– Typically heavier than Wind River® Simics®
checkpoints (longer save, bigger size)

• Sometimes used to checkpoint simulators

– Run inside of VM, save the VP along with its engine
and the OS it is running on

– Supports “save”, “undo”, “reproduce”

19
*Other names and brands may be claimed as the property of others

Process checkpointing

• Used in high-performance computing (HPC) to save process state for
long runs (allow recovery)
– Save entire process space as maintained by the operating system (OS) to disk and

reload

– Expects same host, same precise host configuration, same binaries

– Interesting effects if network connections are left open during save

– Supports ”save your work” and ”undo bad actions”, but:
• No portability across hosts

• No compatibility across versions

• No opportunity for gear-shifting

• Used in some commercial tools & virtual platform setups

20

Persistence and Serialization

• For example, C++ Boost* serialize

• Save state of a set of [C++, Java*, ...] objects to disk for later reloading
into memory

– Explicit export and import steps

– Execution threads and variables not saved – only contents of objects

– No pointers saved – only symbolic reference to other objects

– Allows portability across hosts
• Provided data is not saved in “dumb” ways, like binary blobs with data endianness

21*Other names and brands may be claimed as the property of others

Reverse Execution & Record/Replay Systems

• Save traces of execution to disk for replay & review in debugger

– Saves a particular concrete execution

– Cannot continue execution from saves file

– Supports bug reporting and replay use cases

• For example: Undo* LiveRecorder*, Microsoft* WinDbg* Time Travel
Debug, Mozilla* RR*, Intel® PinPlay*

22
*Other names and brands may be claimed as the property of others

WIND RIVER® SIMICS®
SYSTEMC CHECKPOINT LIBRARY

A current proof-of-concept implementation

© Accellera Systems Initiative 23

Tricky Stuff in SystemC

• Threads

– Implicit state: the current point in
the code (current wait())

• Stack-based storage of state

– Tightly coupled to a particular
compilation of a particular code
version (and often implicit)

• Identification of state

– Which class members and other
variables constititute the state?

• Pointers between objects

– Depends on the details of the
machine state when program runs

• Endianness & word length

– Data has to be neutral to host
endianness, word length, and
compiler data size choices

• Target system structure

– Embedded in code or data-driven?

© Accellera Systems Initiative 24

SystemC* Checkpoint Library

• Simulator-independent design

– Gives the user the tools to write checkpointable models

– Gives the user the tools to write a checkpointable SystemC kernel

• Implementations:

– Checkpoint support added to Intel-internal SystemC kernel

– Used in stand-alone execution (standard SystemC executable)
• Call to save checkpoints integrated into the model code (like sc_main())

– Used by the Wind River® Simics® SystemC* Library
• Saves state into Simics checkpoint file structure, invoked from Simics

© Accellera Systems Initiative 25

Checkpoint Library Design: Serializer

• Based on Boost serialize
– Additional mechanisms available to

deal with large data images

• SystemC modules:
– Instantiate a Serializer class

• Automatically found by framework

• Provides the serialize() function

• serialize() function lists all non-SystemC-
module-children to include them

• Non-SystemC modules
– Add a serialize() function to expose

the state

• SystemC threads:
– When a thread is (re)started, check

current state in the module and
somehow get to the right wait()

– Note: Restart can happen multiple
times in a session in case of reverse
execution

– Note: Restarting a feature of the
patches SystemC kernel

© Accellera Systems Initiative 26

Checkpoint Library Design: Loading

• When loading a checkpoint, the following happens:

1. Create structure (just like when the model is created normally)

2. Set the state (as on previous slide)

3. Restart all SC_THREADs

• Note that for reverse execution, 2 & 3 can happen many times within a
simulation run!

© Accellera Systems Initiative 27

Checkpointing & Modeling Libraries

• Using a [TLM] modeling library can make checkpointing easy

– Code registers, attributes (or other state container), etc., using library constructs

– Write SC_METHOD & SC_THREAD according to guidelines

– Library automatically creates the infrastructure for save and restore of state

– Library automatically hooks models into checkpointing central driver

© Accellera Systems Initiative 28

Checkpoint Library Notes

• All stacks of all threads are gone

– State has to be kept in variables
that can be serialized

• State of SystemC modules is
saved in JSON format files

– Inside of Simics checkpoint
directories for the Simics case

• SystemC kernel patches currently
not in mainline kernel

• Branched boost library used to
avoid name collisions

© Accellera Systems Initiative 29

GOING FORWARD

© Accellera Systems Initiative 30

SystemC CCI – Basic Mechanisms

• CCI parameters essentially provide the core mechanism needed to
represent state outside of a running model

– Host-independent expression of data values with a name

– Name-value mappings and a type system for values

• Still need to deal with kernel, structure, and making sure all state gets
saved and restored

© Accellera Systems Initiative 31

To Do (or at least Discuss)

• There is no magic!

– Models will have to be adapted to support checkpointing

• In particular:

– Keep model state explicit and separate from implementation

– Deal with thread positions

– Deal with in-place state changes

– Avoid keeping things on the stack

© Accellera Systems Initiative 32

THE END

33

