
Standardization Around Registers

What’s needed?

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by GreenSocs, STMicroelectronics,
Intel and Ericsson to use this material in developing all
future revisions and editions of the resulting draft and
approved Accellera Systems Initiative SystemC standard,
and in derivative works based on this standard.

On the panel

© Accellera Systems Initiative 3

Philipp Hartmann

Intel

Jerome Cornet

ST

Ola Dahl

Ericsson

Mark Burton

GreenSocs

What do we mean: Registers?

• Accessible state✔
– Has an address/offset etc

• ‘latches’ in the design.✖
– Though – maybe …

Past work:
• Cadence/ST SCI Reg proposal

– Possible starting point

• CCI / SystemC evolutions
– Things to reuse or easier to do now…

• GreenSocs ‘GreenReg’
– Possible user code.

© Accellera Systems Initiative 4

• Accessing Registers from a tool

– (introspection and debug)

• Knowing the register map

– Useful for the tool

– Useful for debug

• Convenient ways to define registers

The problems

© Accellera Systems Initiative 5

Past experience
• Hardware engineers are very creative!

– Split/single IO.
– Register located at given offset

• Bus accesses goes to different “locations” based on security bus attributes and
CPU ID

– Handling mixtures of endian-ness (even in the same model!)
– Non processor address spaces – e.g. SPI, etc…
– Our models and register implementations are full of special cases!

• And they are at the VERY CORE of all (virtual prototyping) flows!

The ‘register’ object is complicated, and forever changing!!!
(impossible to standardize a ‘register model’ to meet everybody's needs)

© Accellera Systems Initiative 6

XXX_CFG_NSEC_CPU_1

XXX_CFG_SEC_CPU_1
XXX_CFG XXX_CFG_NSEC_CPU_0

XXX_CFG_SEC_CPU_00x704

Use cases
• Enable tool/validation use cases
 without changes to the model itself

• Debug support

• Monitoring / Tracing / Logging

• Fault injection

• Coverage collection

• …

© Accellera Systems Initiative 7

Use cases
• Discovery

– Enumerate all available registers
– Get the address map of all registers

» Not always directly connected to a processor! – e.g. SPI

• Querying information about a register/resource

– “Basic” information
» Names, documentation
» Width
» Accessibility (read/write)
» Bit fields (names, width, offset, readable/writable, …)
» Reset values

– Address, offset
» May be context dependent (i.e. who’s asking?)

– Has side effects? (whatever that means)

© Accellera Systems Initiative 8

Backdoor/tool access to a register
• Read/write without going through a TLM-2.0 transaction

– Access at bit field granularity needed
– Without triggering side effects (i.e. debug access)
– With triggering side effects (as if it accessed from SW)

• Forcing a register to a specific value
– Ignoring other accesses until released again
– Override access permissions

• Notification (callbacks) for accesses
– “Software access” (e.g. coming from a bus)
– “Hardware access” (modification from the model directly)
– “Debug access” (backdoor access, e.g. for synching different tools)

• Could be extended to other resources
– e.g. memories

© Accellera Systems Initiative 9

Underlying difficult questions
• What do you mean with “basic properties”?

– Where do we stop?
– Address Maps? Types of registers? Definitions (IPXACT)?
– Security features… etc

• Do we cover ‘memories’ too?
– When is a register a memory?
– Often memory areas embedded in ‘register map’,

• helpful to load/store to/from file…

• What do you mean by “address map”?
– The bit fields in a register?
– The local offset of a register in a bank?
– The (multiple) offsets of an register bank
– The (multiple) offsets of IP base addresses
– From who’s perspective… in what context…

© Accellera Systems Initiative 10

Goals

• “Long lasting” API

– At least try to design something still relevant in the future

• Vendor Neutral

– Anyone can discover/access register information in the
simulation (tools, model, internal utility blocks…)

• Keep it simple silly

– Straightforward implementation and documentation

© Accellera Systems Initiative 11

Path forward

• Keep It Simple Silly!
– Narrow our scope

• ‘Introspection’
– What needs to be ‘discoverable’.

– What needs to be ‘introspect-able’.

– Ex: What are the “basic properties”.

• ‘Interoperability’
– Focus on the IP/Tool API

• Where do ‘address maps’ fit?

© Accellera Systems Initiative 12

