
Standardization Around Registers

What’s needed?
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What do we mean: Registers?

• Accessible state✔
– Has an address/offset etc

• ‘latches’ in the design.✖
– Though – maybe …

Past work:
• Cadence/ST SCI Reg proposal

– Possible starting point

• CCI / SystemC evolutions
– Things to reuse or easier to do now…

• GreenSocs ‘GreenReg’
– Possible user code.
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• Accessing Registers from a tool

– (introspection and debug)

• Knowing the register map

– Useful for the tool

– Useful for debug

• Convenient ways to define registers

The problems
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Past experience
• Hardware engineers are very creative!

– Split/single IO.
– Register located at given offset

• Bus accesses goes to different “locations” based on security bus attributes and 
CPU ID

– Handling mixtures of endian-ness (even in the same model!)
– Non processor address spaces – e.g. SPI, etc…
– Our models and register implementations are full of special cases!

• And they are at the VERY CORE of all (virtual prototyping) flows!

The ‘register’ object is complicated, and forever changing!!!
( impossible to standardize a ‘register model’ to meet everybody's needs)
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Use cases
• Enable tool/validation use cases
 without changes to the model itself

• Debug support

• Monitoring / Tracing / Logging

• Fault injection

• Coverage collection

• …
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Use cases
• Discovery

– Enumerate all available registers
– Get the address map of all registers

» Not always directly connected to a processor! – e.g. SPI

• Querying information about a register/resource

– “Basic” information
» Names, documentation
» Width
» Accessibility (read/write)
» Bit fields (names, width, offset, readable/writable, …)
» Reset values

– Address, offset
» May be context dependent (i.e. who’s asking?)

– Has side effects? (whatever that means)
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Backdoor/tool access to a register
• Read/write without going through a TLM-2.0 transaction

– Access at bit field granularity needed
– Without triggering side effects (i.e. debug access)
– With triggering side effects (as if it accessed from SW)

• Forcing a register to a specific value
– Ignoring other accesses until released again
– Override access permissions

• Notification (callbacks) for accesses
– “Software access” (e.g. coming from a bus)
– “Hardware access” (modification from the model directly)
– “Debug access” (backdoor access, e.g. for synching different tools)

• Could be extended to other resources
– e.g. memories
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Underlying difficult questions
• What do you mean with “basic properties”?

– Where do we stop?
– Address Maps? Types of registers? Definitions (IPXACT)?
– Security features… etc

• Do we cover ‘memories’ too?
– When is a register a memory?
– Often memory areas embedded in ‘register map’, 

• helpful to load/store to/from file…

• What do you mean by “address map”?
– The bit fields in a register?
– The local offset of a register in a bank?
– The (multiple) offsets of an register bank
– The (multiple) offsets of IP base addresses
– From who’s perspective… in what context…
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Goals

• “Long lasting” API

– At least try to design something still relevant in the future

• Vendor Neutral

– Anyone can discover/access register information in the 
simulation (tools, model, internal utility blocks…)

• Keep it simple silly

– Straightforward implementation and documentation
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Path forward

• Keep It Simple Silly!
– Narrow our scope

• ‘Introspection’
– What needs to be ‘discoverable’.

– What needs to be ‘introspect-able’.

– Ex: What are the “basic properties”.

• ‘Interoperability’
– Focus on the IP/Tool API

• Where do ‘address maps’ fit?
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