
Improvements to SystemC Datatypes:
A Community Discussion

SystemC Datatypes Working Group @ SystemC Evolution Day 2017

Presented by Frederic Doucet (WG Chair)

2

Presentation Copyright Permission

- A non-exclusive, irrevocable, royalty-free copyright permission is granted by Qualcomm Technologies, Inc. to use this

material in developing all future revisions and editions of the resulting draft and approved Accellera Systems Initiative

SystemC Language standard, and in derivative works based on the standard.

- A non-exclusive, irrevocable, royalty-free copyright permission is granted by Cadence Design Systems, Inc. to use this

material in developing all future revisions and editions of the resulting draft and approved Accellera Systems Initiative

SystemC Language standard, and in derivative works based on the standard.

Agenda

▪ Usage of SystemC datatypes and SystemC Datatype Workgroup

▪ Issues in current POC implementation

▪ Proposal:

- Improve performance without API changes: implementation improvements by Cadence

▪ Proposal:

- Improvements with API changes: AC Datatypes by Mentor

▪ Open discussion

SystemC Datatypes

▪ Provides a very convenient API for bit exact code and -point code

- Very convenience syntax, close to HDL style syntax, much more convenient than standard shift and mask

operations

- Main classes are sc_int<W>, sc_bitgint<W> and sc_fixed<W,I,Q,O>

sc_int<2> c = …

sc_int<8> v1 = …

sc_int<8> v2 = …

sc_int<16> v3 = …

sc_fixed<18,2,SC_RND,SC_SAT> v = v1*v2+v3;

if (c[0]) { v >>= 4; }

else if (c[1]) { v >>= 2; }

▪ Rich set of functionality

- Many functions to access individual bits, bit ranges,

arithmetic and logical operations, etc

- Classes and functions automatically keep track of

growing bit widths in expressions

- Saturation and rounding logic in datatypes

▪ Widely used in design code to precisely describe the datapath computation bit widths

- i.e. to be synthesized by HLS

SystemC Datatypes in Production

▪ Over the last fifteen years, SystemC users and EDA companies have been using the

standard SystemC datatypes in different ways:

- using the proof-of-concept library as is, or

- internally customizing it, or

- completely re-implementing them for simulation speed or synthesizability

▪ Main issues in current POC implementation of SystemC datatypes

1. Simulation speed is slow, especially for large bit widths

2. Syntax where bit widths are dynamic can be problematic for HLS

▪ The AC datatype library was developed to address these issues (and more)

- There was a proposal in SWG workgroup to standardize AC datatypes as a library

- The proposal was raised to the LWG and …

SystemC Datatypes Workgroup (SCDT)

▪ In January 2017, the LWG launched a new sub-workgroup with focus on datatypes

▪ WG Objective:

- Define an advanced set of SystemC datatypes, suitable for all SystemC modeling domains and abstraction

layers from algorithmic models to synthesis

▪ Regular meetings twice a month (2nd and 4th Tuesday of the month)

▪ Active participation from Qualcomm, NXP, Intel, Mentor and Cadence

- Currently a heavy focus on design and HLS (we want to change that)

▪ The goal of this interactive session is to

1. Present the status of the work and results from workgroup

2. Discuss the datatypes issues and possible solutions with the broader SystemC communities

3. Collect more feedback and engage the community at large (especially non-HLS users)

7

Current POC Datatypes

▪ Base classes (sc_signed) bit widths specified

at runtime through constructor arguments

- Used for modeling, performance (bitwidth) exploration

and tuning

▪ Leaf classes (sc_bigint) must have bit widths

specified at compile time through templates

- Use for design with HLS

▪ Storage and logical and arithmetic functions

are in the base classes

- Shared storage in base classes

- Virtual functions dispatching makes clean code

storage

arith. func.

storage

arith. func.

There are other classes too for part-select, concatenation, etc, (for simplicity, we omit those)

sc_value_base

sc_int_base sc_signed

sc_bigint<W>sc_int<W>

8

API Issues in Current POC Datatypes

▪ Arithmetic functions have unnecessary

overhead in going back into the base

classes

- Arithmetic operations go though virtual functions

- Prevents many compiler optimizations

▪ Some operations (concatenation, shifts)

calculate return bit widths at runtime

- Go into the base class, and dynamically compute

the bit widths of the range selection, based on the

arguments

- Big issue for design : HLS tool needs to know all bit

widths at compile time

▪ Inconsistent semantics in bit shifting

- Not matching C++ semantics, negative shift values

sc_value_base

sc_int_base sc_signed

sc_bigint<W>sc_int<W> arithmetic
function call

9

Implementation Issues in Current POC Datatypes

1. Significant constructor overhead

- Each time a sc_signed is allocated , a call to new() is done

for the internal data storage (and to delete for destructor)

- Data is always initialized to zero

2. Arithmetic performed using signed-

magnitude

- Overhead in maintaining separate sign field

- in some calculation requiring conversion to two’s complement

- No reason not to use 2’s complement

3. 32 bits words used to store 30 bits

- Assignments require shifting, and, or etc.

- Calculating word indices is inefficient (div by 30)

- Cross-type assignments to sc_int done one bit at-a-time

sc_value_base

sc_int_base sc_signed

sc_bigint<W>sc_int<W>

10

Implementation Issues in Current POC Datatypes

sc_value_base

sc_int_base sc_signed

sc_bigint<W>sc_int<W>

Many of these implementation choices

where done more than 20 years ago,

when programs and computer memory

were much smaller…

…days when 640k of memory was

enough for everybody!)

11

CADENCE PROPOSAL
FOR DATATYPE IMPROVEMENT

Mike Meredith

Accellera datatype subgroup 10/13/2017

Context and motivation

▪ Context

- SystemC is the (only?) C++-based standard that defines arbitrary bit-width computation

- The existing Accelera implementation has performance problems related to datatypes

▪ Goals

1. Improve simulation performance for existing SystemC code

- Users who have written millions of lines of code need a performance improvement

2. Attract new users e.g. algorithm developers to use SystemC

3. Avoid expensive LRM development

4. Avoid proliferation of incompatible classes and APIs inside the standard

- We need to be able to intellectually defend proposed standardization

Performance evaluation of SystemC 2.3

▪ The existing SystemC 2.3 implementation

- sc_uint performance is reasonable

- sc_biguint implementation produces very slow performance

▪ Compare SystemC 2.3 datatype performance with ac_int performance

- 1-32 bits - sc_uint is 1.3X slower

- 32-64 bits - ac_int is 1.6X slower

- >64 bits - sc_biguint is up to 10X slower

width sc_uint sc_biguint ac_int

1-32 1.3 43.8 1

32-64 1 39.6 1.6

>64 Up to ~10 1

Cadence proposal summary

▪ Do not change any existing SystemC semantics

▪ Improve performance of inefficient sc_biguint implementation

- Cadence has contributed an implementation

▪ Performance improvement achieved with biguint

- 1-32 bits - 10.2X faster

- 32-64 bits - 8.7X faster

- >64 bits - Up to ~6X faster

▪ Comparison with ac_int

- Assuming sc_uint used for <64 bits

- 1-32 bits - sc_uint is 1.3X slower

- 32-64 bits - ac_int is 1.6X slower

- >64 bits - biguint is 1.6X slower

width sc_uint sc_biguint ac_int Proposed

biguint

1-32 1.3 43.8 1 4.3

32-64 1 39.6 1.6 4.5

>64 Up to ~10 1 1.6

Advantages of this approach

1. Maintain compatibility with existing designs

- Millions of lines of code

2. Provide performance improvement for existing designs without conversion cost

3. Avoid cost and delay of development of new LRM

4. Avoid development of new SystemC tests

5. Avoid complicating and confusing the standard

with additional incompatible classes and APIs

IMPROVEMENTS WITH API CHANGES

Presentation of proposal by Mentor

ISSUES WITH FIXED-POINT TYPES

Issues in Fixed-point Types

▪ Many SystemC users use the fixed-point datatypes (also has speed issues)

▪ This from post by David Black: http://forums.accellera.org/topic/1638-data-type-sc_int-vs-int/

http://forums.accellera.org/topic/1638-data-type-sc_int-vs-int/

19

Issues in Fixed-point Types

▪Also has similar API issues to bigint

- Arithmetic functions in base classes

▪sc_fixed_fast provided to provide

faster simulation speed

- Equivalent to sc_fixed only for mantissas of

bitwidths up to 53 bits

▪API also has implicit cast to double

- Possible loss of precision in design because

double has only 53 bits mantissa

sc_fixnum

sc_fix

sc_fixed<W,I,Q,O>

sc_fixnum_fast

sc_fix_fast

sc_fixed_fast<W,I,Q,O>

finite precision limited precision (uses
double under the hood)

arith. func.arith. func.

Status of the Proposals (1/2)

1. Speed improvements bigint without API changes

Cadence has contributed a prototype implementation

https://workspace.accellera.org/apps/org/workgroup/sdtwg/download.php/15963/Fast_systemc-2.3.0.tgz

We begin a 90-day review period of the proposed changes (until January 15th 2018)

Please download the tarball and experiment with it, report feedback on the performance improvements or

questions on either the LWG forum in a datatype thread:

http://forums.accellera.org/forum/10-systemc-language/

Please join the working group!

https://workspace.accellera.org/apps/org/workgroup/sdtwg/index.php

https://workspace.accellera.org/apps/org/workgroup/sdtwg/download.php/15963/Fast_systemc-2.3.0.tgz
http://forums.accellera.org/forum/10-systemc-language/
https://workspace.accellera.org/apps/org/workgroup/sdtwg/index.php

Status of the Proposals (2/2)

2. Speed and syntax improvements with API changes

Needs more discussions and experimentations

3. Improvements to fixed-point datatypes

- Discussions and work to start in future

Please join the working group!

https://workspace.accellera.org/apps/org/workgroup/sdtwg/index.php

https://workspace.accellera.org/apps/org/workgroup/sdtwg/index.php

Open Discussion What kind of API changes would you find
reasonable?

a) None! We need 100% backward compatibility!

b) Anything! No backward compatibility needed,
we’ll rewr ite everything!

c) Be cautious! Backward-compatibility for 95% of
the code?

Are you using AC Datatypes mixed with
SystemC?

a) Standardize AS IS!

b) Standardize, but change a few things!

c) Merge the good stuff from AC into SC
improvements

Would you like a sc_complex
class?

a) yes

b) no

Would you like a sc_float class?

a) yes

b) no

What is the most important
thing for you?

a) Bigint speed

b) Fixed-point speed

c) AC datatypes standard

d) Free lunch!

Are SC integer datatypes used
only by HLS designers?

a) yes

b) no

Is/would your algo team used SC
fixed-point datatypes if fast enough?

a) yes

b) no

Are you (or anybody)
using sc_signed?

a) If so, why?

