
1

Presentation Copyright Permission
- A non-exclusive, irrevocable, royalty-free copyright permission is granted by Mentor Graphics(a Siemens business) to

use this material in developing all future revisions and editions of the resulting draft and approved Accellera Systems
Initiative “SystemC” standard, and in derivative works based on the standard.

Algorithmic C (AC) Datatypes

SystemC Datatypes Working Group @ SystemC Evolution Day 2017
Presented by Kunal Bindal (Mentor, a Siemens Business)

3

Numerical Algorithmic C (AC) Datatypes Overview
 Integer: ac_int (replaces sc_int, sc_uint, sc_bigint, sc_biguint)

 Fixed-point: ac_fixed (replaces sc_fixed, sc_ufixed, sc_fixed_fast, sc_ufixed_fast)

 Complex: ac_complex<T> (Not available in SystemC)
- Type T can be any AC type or C integer or float/double

 Float: ac_float (Not available in SystemC)

 Timeline

2004 2006 2008 2010 2012 2014 2016

4

Apache 2.0 Release (Since Jun 2016)

https://www.mentor.com/hls-lp/downloads/ac-datatypes

https://github.com/andres-takach/ac_types

https://www.mentor.com/hls-lp/downloads/ac-datatypes
https://github.com/andres-takach/ac_types

5

Motivation For Creating AC Datatypes
 Identified issues with SystemC Datatypes in fall of 2003

- ST and Mentor collaborated and donated work to Synthesis Working Group
- Findings reported to Language Working Group

 Issues
- Too slow for hardware verification requirements
- Many issues with inconsistent and not well defined semantics
- Deep hierarchy of classes all exposed as API.

- It constitutes Documentation/LRM
- Hardware designers expect a more formal definition of what to expect

6

Standardization of AC Datatypes
 Requested by active members of the SWG over years to be included in the SWG standard

 Licensing was changed to Apache 2.0 in June 2016 to enable inclusion in the SWG subset
- Just a C++ library of classes: no impact on the SystemC kernel
- Does not need to be formal part of the SystemC language to be considered in the SWG

 Language Working Group
- Suggested creation of the SystemC Datatype Sub-Working Group (SDTWG)

 AC Datatypes addresses ALL issues that have been identified
- Not just speed of integer types

PROPOSAL FOR ADDING AC
DATATYPES TO SYSTEMC

7

8

 Keep behavior/API of existing SystemC datatypes unchanged
- Legacy IP blocks need to work unchanged
- APIs changes are disruptive

 Add AC Datatype Library to SystemC
- Headers: include ac_sc.h in systemc.h

- Includes all AC types
- Provide conversion functions:

- to_ac({sc_int, sc_uint, sc_bigint, sc_big(u)int, sc_(u)fixed})
- to_sc({ac_int, ac_fixed})

- Provides sc_trace so that AC types can be used for sc_signals

 For first release of AC Datatypes, keep API as is
- Take input from user community for additional API extensions for second release
- Extensions may leverage C++ 11/14

Proposal

9

 Include ac_sc.h

 Provides explicit conversions
- to_ac (from sc_bigint, sc_biuint, sc_fixed, sc_ufixed)

- From sc_int and sc_uint could be added
- to_sc (to sc_bigint, sc_biguint, sc_fixed, sc_ufixed)
- For example:

- ac_int<W,true> x = to_ac(x_in.read());
- auto x = to_ac(x_in.read()); // C++ 11

 SystemC tracing

Available: Interfacing with SystemC

10

 Saturation/Overflow handling already part of ac_fixed
- Querying whether overflow occurred is currently not available

 Different use models
- Simulation assert

- Easy to implement, can be made highly customizable
- Needs definition on how much control is desired

- Synthesizable assert

- Needs more formal definition

 The SDTWG could define
- Need some user input and validation

- Several users have expressed interest

Saturation/Overflow Query

11

 Static Width in AC Datatype is a positive
- Has advantages for synthesis, speed and predictable semantics

 If Dynamic Width is required
- Dynamic versions can be created

 Operators that return Dynamic Width
- range operator (i,j) and range(i,j)
- Shift operators << and >>

 to_sc can be used for ostream <<, to_string to keep exact format if required

Workarounds for Dynamic Width and Other Differences

12

Advantages
 Production Quality:

- Validated in production for hardware designs for more than a decade
- IP such as the VP9 from Google relies on the AC types

 Fast:
- ~100x faster against existing sc_bigint
- ~6x faster than NEW PROPOSED sc_bigint

- DCT, Slice with 32 bits or less

- 1.5x to 2.0x faster than sc_int

- Though not comparable since is not sc_int is not arbitrary length

- 40x to 100x faster than sc_fixed

 Consistent: operators are all defined with consistent semantics
- Fully defined operator for mixing AC Datatypes and C integers

13

Advantages
 Compact and Easy to Use

- Implemented as header files.
- Pretty printing available for the gdb debugger

 Clean separation of Implementation and Exposed API
- In contrast with SystemC datatypes that expose all the class hierarchy as the API

- SystemC datatypes very hard to improve without impacting users

 Fully Documented
- Return type for all operators (bit-width) fully documented

- As compared to SystemC which requires to understand details of implementation

 Traits Defined: enables writing templated IP
- SystemC types present many difficulties as dynamic width base classes are returned

 Interfaces with SystemC Datatypes: Interface with legacy blocks

14

Issues That Remain with SystemC
 Even with proposed improvements to sc_bigint, it is still Still slower. Can speed up by taking more

ideas from AC Datatypes, BUT
- Will be disruptive to existing users that already have legacy IP
- Will take time to implement and solidify
- Why not just use AC Datatypes then?

 Unresolved Datatypes
- How about sc_fixed?
- Will sc_int/sc_uint be obsoleted?

- Numerous issues with semantics, undefined behavior etc.
- sc_uint<W>(1)/ sc_int<W>(-1) = 0 !!!

- Will the extensive set of base class, helper classes be eliminated?
- Requires a major rewrite of LRM. Disruptive!

 Inconsistencies between Datatypes and other gaps
- Shift behavior is different between sc_bigint and sc_fixed
- ~ unary operator is different between sc_bigint and sc_fixed
- sc_fixed has issues with how it defines the division operator

THANK YOU!

15

	Presentation Copyright Permission
	Algorithmic C (AC) Datatypes �������
	Numerical Algorithmic C (AC) Datatypes Overview
	Apache 2.0 Release (Since Jun 2016)
	Motivation For Creating AC Datatypes
	Standardization of AC Datatypes
	PROPOSAL FOR ADDING AC Datatypes TO SYSTEMC
	Proposal
	Available: Interfacing with SystemC
	Saturation/Overflow Query
	Workarounds for Dynamic Width and Other Differences
	Advantages
	Advantages
	Issues That Remain with SystemC
	THANK YOU!��

