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Motivation
 Modeling of pin and cycle accurate interfaces

— Required to connect to RTL models
 Want abstract view (function call) view to use interfaces to model 

behavior:
— r = in1.read() + in2.read()

 Modular IO: abstract view encapsulates pin and cycle accurate 
details of protocol
— C++ class encapsulate ports and/or signals and provide abstracts functions 

such as read, nb_read, write, nb_write etc.
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Example: p2p wire interface
 Protocol similar to AXI Streaming
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class in<T>

i_dat
i_vld
o_rdy

T read()

bool nb_read(T &data)

class out<T>

o_dat
o_vld
i_rdy

void write( T data)

bool nb_write(T data)

class chan<T>
dat
vld
rdy

Ports (sc_in/sc_out)

sc_signals



P2P Example
SC_MODULE(DUT) {
sc_in<bool> clk, rst;
p2p<>::in<Data> in1, in2;
p2p<>::out<Data> out1;
SC_CTOR(DUT) : … {  SC_CTHREAD(process, clk.pos(); reset_signal_is(rst,true); }
void process() {

in1.reset_read();  in2.reset_read(); out1.reset_write();
while(1) {

wait();
out1.write( in1.read() + in2.read());

}
}

};
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Basics of the Protocol
 Transfer of data occurs when both vld and rdy are high in the 

same cycle
— No COMBINATIONAL between vld and rdy

 To read:
— o_rdy is set to high
— Synchronously wait for i_vld to become high
— get data from i_dat
— Set o_rdy back to low
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T read() {
do {  o_rdy.write(true); wait(); } while (i_vld.read() != true);
o_rdy.write(false);
return i_dat.read();

}



Advantages
 Encapsulating protocols allow the behavior to remain more 

abstract:
— Better separation of computation and communication
— Opportunity to abstract behavior for faster simulation

 Synthesis has a more abstract view that allows it to understand 
Modular IO ports as being independent.

 Better for visualization and debug
 Library of p2p can provide different protocols that can be reused

— fifos, events

AT, SystemC Evolution, Oct 20177



Challenges
 There is no easy way to express concurrency between 

transactions:
— r = in1.read() + in2.read()
— Each read() encapsulates sequential behavior (pin wiggles) and consumes 

one or more cycles.
— The two read() calls will be sequential, not concurrent

 Synthesis can treat transactions on different ports as concurrent
— RTL implementation from HLS runs faster than SystemC model

 If SystemC model is to become “sign-off” point need to be able to 
have it run with the same concurrency of IO transactions:
— Loosely speaking “throughput accurate”
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Throughput Accurate
 If SystemC model is able to run IO transactions as concurrent

 SystemC model can run as fast as fastest RTL implementation

 Add cycle latency to match the RTL interface behavior
— Can exercise same cycle-accurate IO access patterns as RTL

 Three approaches explored for modeling throughput accurate IO
— Forking to achieve concurrency
— Concurrent Blocking for IO
— Emulating concurrency in one thread
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Approach 1: Forking to Achieving Concurrency
 Use SystemC functionality to spawn threads for transaction calls

rd = sc_spawn(&rd.data, sc_bind(&in::read, this), name, 
&spawn_opt);
 sc_spawn returns a handle of type sc_process_handle. 

— Construct and object rd of type ac_fork_d that stores 
– Process handle
– has datamember data where result of in::read() is stored

— Wait on completion of process using process handle 
– wait(process_handle.terminated_event())

— Can define the operator()() to wait on the completion of process
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Approach 1: Forking to Achieving Concurrency
 Use SystemC functionality to spawn threads for transaction calls
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template <class T>
class in<T> {
…
T read() {  ….;  return data; }   // synthesizable

// ac_fork holds data of type T and process handle
//    operator ()() waits for completion of spawned process
typedef ac_fork_d<T> rd_t;
rd_t rd;

const rd_t &read_f() {       // forked version of read() that initiates read
#ifndef __SYNTHESIS__

rd = sc_spawn(&rd.data, sc_bind(&in::read, this), name, &spawn_opt);
#else

rd.data = read();
#endif

return rd;
}

};



Approach 1: Forking to Achieving Concurrency

 Requires to split initiation and completion of transaction for 
transactions that return a result:
— a.read_f();   b.read_f();     // initiate (spawn) reads for inputs a and b
— Sum = a.rd() + b.rd();  // wait for completion

 Disadvantages
— Split transactions are not desirable. Harder to manage cleanly
— Impact on runtime
— Harder to debug
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Approach 2: Concurrent Block for IO
 Concurrent process

— Does the protocol signaling
— Transaction methods interact with it using signals
— Contains buffer

– Read is pre-fetched
– Write is buffered

 Disadvantages
— Since transaction methods are called from process sensitive to clock, input 

to output is registered.
– Hard to debug behavior that interacts correctly with concurrent process
– Runtime impact due to additional thread and signaling

— Concurrent process needs to inherit clock and reset behavior from main 
process using the p2p IO
– No easy syntax to hook them up correctly by default
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Approach 3: Emulate Concurrency
 “Register” every p2p port from “reset” method of p2p port

— Places it in a list of p2p port for that process (SC_THREAD or 
SC_CTHREAD)

 “Intercept” every wait() to call specialized wait_mio function that 
calls:
— update_pre for every registered p2p port
— ::wait()
— update_post for every registered p2p port

 Since the update functions execute on every wait(), it models a 
concurrent block that actively interacts with the environment
— Does all the pin and cycle accurate protocol signaling
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Advantages
 Update functions are executed in the context of the process 

(SC_THREAD, SC_CTHREAD) that owns the p2p port
— No context switch: minimizes runtime overhead
— Clean interface between signals used for protocol and variables that are 

used to interact with transactions functions (e.g. read(), write())
— Clock and reset are implicitly handled by parent process

 Since every p2p port is guaranteed to be updated for every WAIT, 
it is 
— Easy to add instrumentation to aid debugging, gathering of statistics etc. 
— Add forced stalls for:

– coverage
– alignment with RTL simulation
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Example of p2p::out<T>
template <class T>
class out <T> : public MIO_Base {      // MIO_Base::wait() is special wait

sc_out<T> o_dat; sc_out<bool> o_vld; sc_in<bool> i_rdy;       //  Ports/signals
T dat_in; bool dat_vld;  bool buffer_full;    // Variables
// Update functions interact with the environment (port/signals)
//    read/update variables    
void update_pre();
void update_post();
// Transaction functions
//    Interact with update functions using variables
bool ready() { return !buffer_full; }
void write (T data);
bool nb_write(T data);

}
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Update functions for p2p::out<T>

void update_pre {
if(!buffer_full & dat_vld) {

buffer_full = true;
o_dat.write(dat_in);

}
o_vld.write(buffer_full);
dat_vld = false;

}
}
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void update_post {
if(buffer_full) {

if(i_rdy.read())
buffer_full = false;

}
}



Transaction functions for p2p::out<T>

bool ready() { return !buffer_full; }

void write (T data) {
while(!ready())

wait();           // MIO_Base::wait()
dat_vld = true;
data_in = data;

}
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bool nb_write(T data) {
if(ready()) {

data_vld = true;
dat_in = data;
return true;

}
return false;

}



Update Function
 All signaling (sc_in, sc_out, sc_signal) is encapsulated in the 

update functions (pre and post). 
 Update functions are called for every process wait

— update_pre is immediately before the wait
— update_post is called immediately after the wait

 Member functions for transactions (write, nb_write etc.) only use 
variables (rather than signals or ports)

 Member functions for blocking transactions calls special wait
— Provided by MIO_Base
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Registering of p2p and Special wait()
 P2p port is automatically registered by process that calls “reset” 

method for it
— in1.reset_read();
— assert is triggered if port not registered

 Special wait cycles through the execution of all update_pre and 
update_post functions before and after an actual ::wait()

 Special wait is provided by
— MIO_Base for wait() called from p2p class
— sc_module2 base class (other mechanisms are possible)

– Provides wait() for calls from thread functions (SC_THREAD and SC_CTHREAD)

 Run time checks (assert) to identify calls to non special wait 
(::wait)
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Data Buffering
 Without true concurrency (spawning processes to initiate protocol) 

data buffering in the p2p class is required
 Without buffering for read:

— Can take current valid data
— Signal to environment data was taken

– Environment will see it on next cycle
— Can only perform 1 read for every 2 cycles

 FIFO buffering can be reduced due to buffering in the ports
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Preliminary Results
 Used JPEG example with AXI bus interfacing to memory as a 

testcase
 The cycle throughput of the simulation improved as expected due 

to the concurrency between IO transactions
 The runtime was 1.27x compared to the original

— Original runtime: 4.17s
— Runtime with new p2p: 5.31s
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Conclusions
 Implemented approach for throughput accuracy for point to point 

interfaces
— P2P are pin accurate and implement protocol for port
— P2P interfaces are modular and have transaction functions that can be 

called from behavior that is modeled at an abstract level
— Concurrency of transactions is obtained by

– Buffering reads and writes
– Having a special wait that execute update function in every call

– Responds to environment as a concurrent process would
— P2P are “registered” during their reset calls
— Update functions run as part of the process that owns the P2P 

port/channel
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Conclusions
 Runtime overhead is minor
 It provides a way to enable debug, gather activity information, 

force stalls
 It should enable closer match between SystemC model and 

Synthesized RTL using HLS
— Goal is to enable sign-off point at SystemC

 Could be considered for standards
— Modeling of Interfaces is an important TODO item in the Synthesis Subset 

Standardization
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