
Presentation Copyright Permission
— A non-exclusive, irrevocable, royalty-free copyright permission is granted

by Mentor Graphics(a Siemens business) to use this material in
developing all future revisions and editions of the resulting draft and
approved Accellera Systems Initiative “SystemC” standard, and in
derivative works based on the standard.

Kunal Bindal

Throughput accurate
modeling and synthesis of
abstract interfaces

Calypto Systems Division

October 18, 2017

Motivation
 Modeling of pin and cycle accurate interfaces

— Required to connect to RTL models
 Want abstract view (function call) view to use interfaces to model

behavior:
— r = in1.read() + in2.read()

 Modular IO: abstract view encapsulates pin and cycle accurate
details of protocol
— C++ class encapsulate ports and/or signals and provide abstracts functions

such as read, nb_read, write, nb_write etc.

AT, SystemC Evolution, Oct 20173

Example: p2p wire interface
 Protocol similar to AXI Streaming

AT, SystemC Evolution, Oct 20174

class in<T>

i_dat
i_vld
o_rdy

T read()

bool nb_read(T &data)

class out<T>

o_dat
o_vld
i_rdy

void write(T data)

bool nb_write(T data)

class chan<T>
dat
vld
rdy

Ports (sc_in/sc_out)

sc_signals

P2P Example
SC_MODULE(DUT) {
sc_in<bool> clk, rst;
p2p<>::in<Data> in1, in2;
p2p<>::out<Data> out1;
SC_CTOR(DUT) : … { SC_CTHREAD(process, clk.pos(); reset_signal_is(rst,true); }
void process() {

in1.reset_read(); in2.reset_read(); out1.reset_write();
while(1) {

wait();
out1.write(in1.read() + in2.read());

}
}

};

AT, SystemC Evolution, Oct 20175

Basics of the Protocol
 Transfer of data occurs when both vld and rdy are high in the

same cycle
— No COMBINATIONAL between vld and rdy

 To read:
— o_rdy is set to high
— Synchronously wait for i_vld to become high
— get data from i_dat
— Set o_rdy back to low

AT, SystemC Evolution, Oct 20176

T read() {
do { o_rdy.write(true); wait(); } while (i_vld.read() != true);
o_rdy.write(false);
return i_dat.read();

}

Advantages
 Encapsulating protocols allow the behavior to remain more

abstract:
— Better separation of computation and communication
— Opportunity to abstract behavior for faster simulation

 Synthesis has a more abstract view that allows it to understand
Modular IO ports as being independent.

 Better for visualization and debug
 Library of p2p can provide different protocols that can be reused

— fifos, events

AT, SystemC Evolution, Oct 20177

Challenges
 There is no easy way to express concurrency between

transactions:
— r = in1.read() + in2.read()
— Each read() encapsulates sequential behavior (pin wiggles) and consumes

one or more cycles.
— The two read() calls will be sequential, not concurrent

 Synthesis can treat transactions on different ports as concurrent
— RTL implementation from HLS runs faster than SystemC model

 If SystemC model is to become “sign-off” point need to be able to
have it run with the same concurrency of IO transactions:
— Loosely speaking “throughput accurate”

AT, SystemC Evolution, Oct 20178

Throughput Accurate
 If SystemC model is able to run IO transactions as concurrent

 SystemC model can run as fast as fastest RTL implementation

 Add cycle latency to match the RTL interface behavior
— Can exercise same cycle-accurate IO access patterns as RTL

 Three approaches explored for modeling throughput accurate IO
— Forking to achieve concurrency
— Concurrent Blocking for IO
— Emulating concurrency in one thread

AT, SystemC Evolution, Oct 20179

Approach 1: Forking to Achieving Concurrency
 Use SystemC functionality to spawn threads for transaction calls

rd = sc_spawn(&rd.data, sc_bind(&in::read, this), name,
&spawn_opt);
 sc_spawn returns a handle of type sc_process_handle.

— Construct and object rd of type ac_fork_d that stores
– Process handle
– has datamember data where result of in::read() is stored

— Wait on completion of process using process handle
– wait(process_handle.terminated_event())

— Can define the operator()() to wait on the completion of process

AT, SystemC Evolution, Oct 201710

Approach 1: Forking to Achieving Concurrency
 Use SystemC functionality to spawn threads for transaction calls

AT, SystemC Evolution, Oct 201711

template <class T>
class in<T> {
…
T read() { ….; return data; } // synthesizable

// ac_fork holds data of type T and process handle
// operator ()() waits for completion of spawned process
typedef ac_fork_d<T> rd_t;
rd_t rd;

const rd_t &read_f() { // forked version of read() that initiates read
#ifndef __SYNTHESIS__

rd = sc_spawn(&rd.data, sc_bind(&in::read, this), name, &spawn_opt);
#else

rd.data = read();
#endif

return rd;
}

};

Approach 1: Forking to Achieving Concurrency

 Requires to split initiation and completion of transaction for
transactions that return a result:
— a.read_f(); b.read_f(); // initiate (spawn) reads for inputs a and b
— Sum = a.rd() + b.rd(); // wait for completion

 Disadvantages
— Split transactions are not desirable. Harder to manage cleanly
— Impact on runtime
— Harder to debug

AT, SystemC Evolution, Oct 201712

Approach 2: Concurrent Block for IO
 Concurrent process

— Does the protocol signaling
— Transaction methods interact with it using signals
— Contains buffer

– Read is pre-fetched
– Write is buffered

 Disadvantages
— Since transaction methods are called from process sensitive to clock, input

to output is registered.
– Hard to debug behavior that interacts correctly with concurrent process
– Runtime impact due to additional thread and signaling

— Concurrent process needs to inherit clock and reset behavior from main
process using the p2p IO
– No easy syntax to hook them up correctly by default

AT, SystemC Evolution, Oct 201713

Approach 3: Emulate Concurrency
 “Register” every p2p port from “reset” method of p2p port

— Places it in a list of p2p port for that process (SC_THREAD or
SC_CTHREAD)

 “Intercept” every wait() to call specialized wait_mio function that
calls:
— update_pre for every registered p2p port
— ::wait()
— update_post for every registered p2p port

 Since the update functions execute on every wait(), it models a
concurrent block that actively interacts with the environment
— Does all the pin and cycle accurate protocol signaling

AT, SystemC Evolution, Oct 201714

Advantages
 Update functions are executed in the context of the process

(SC_THREAD, SC_CTHREAD) that owns the p2p port
— No context switch: minimizes runtime overhead
— Clean interface between signals used for protocol and variables that are

used to interact with transactions functions (e.g. read(), write())
— Clock and reset are implicitly handled by parent process

 Since every p2p port is guaranteed to be updated for every WAIT,
it is
— Easy to add instrumentation to aid debugging, gathering of statistics etc.
— Add forced stalls for:

– coverage
– alignment with RTL simulation

AT, SystemC Evolution, Oct 201715

Example of p2p::out<T>
template <class T>
class out <T> : public MIO_Base { // MIO_Base::wait() is special wait

sc_out<T> o_dat; sc_out<bool> o_vld; sc_in<bool> i_rdy; // Ports/signals
T dat_in; bool dat_vld; bool buffer_full; // Variables
// Update functions interact with the environment (port/signals)
// read/update variables
void update_pre();
void update_post();
// Transaction functions
// Interact with update functions using variables
bool ready() { return !buffer_full; }
void write (T data);
bool nb_write(T data);

}

AT, SystemC Evolution, Oct 201716

Update functions for p2p::out<T>

void update_pre {
if(!buffer_full & dat_vld) {

buffer_full = true;
o_dat.write(dat_in);

}
o_vld.write(buffer_full);
dat_vld = false;

}
}

AT, SystemC Evolution, Oct 201717

void update_post {
if(buffer_full) {

if(i_rdy.read())
buffer_full = false;

}
}

Transaction functions for p2p::out<T>

bool ready() { return !buffer_full; }

void write (T data) {
while(!ready())

wait(); // MIO_Base::wait()
dat_vld = true;
data_in = data;

}

AT, SystemC Evolution, Oct 201718

bool nb_write(T data) {
if(ready()) {

data_vld = true;
dat_in = data;
return true;

}
return false;

}

Update Function
 All signaling (sc_in, sc_out, sc_signal) is encapsulated in the

update functions (pre and post).
 Update functions are called for every process wait

— update_pre is immediately before the wait
— update_post is called immediately after the wait

 Member functions for transactions (write, nb_write etc.) only use
variables (rather than signals or ports)

 Member functions for blocking transactions calls special wait
— Provided by MIO_Base

AT, SystemC Evolution, Oct 201719

Registering of p2p and Special wait()
 P2p port is automatically registered by process that calls “reset”

method for it
— in1.reset_read();
— assert is triggered if port not registered

 Special wait cycles through the execution of all update_pre and
update_post functions before and after an actual ::wait()

 Special wait is provided by
— MIO_Base for wait() called from p2p class
— sc_module2 base class (other mechanisms are possible)

– Provides wait() for calls from thread functions (SC_THREAD and SC_CTHREAD)

 Run time checks (assert) to identify calls to non special wait
(::wait)

AT, SystemC Evolution, Oct 201720

Data Buffering
 Without true concurrency (spawning processes to initiate protocol)

data buffering in the p2p class is required
 Without buffering for read:

— Can take current valid data
— Signal to environment data was taken

– Environment will see it on next cycle
— Can only perform 1 read for every 2 cycles

 FIFO buffering can be reduced due to buffering in the ports

AT, SystemC Evolution, Oct 201721

Preliminary Results
 Used JPEG example with AXI bus interfacing to memory as a

testcase
 The cycle throughput of the simulation improved as expected due

to the concurrency between IO transactions
 The runtime was 1.27x compared to the original

— Original runtime: 4.17s
— Runtime with new p2p: 5.31s

AT, SystemC Evolution, Oct 201722

Conclusions
 Implemented approach for throughput accuracy for point to point

interfaces
— P2P are pin accurate and implement protocol for port
— P2P interfaces are modular and have transaction functions that can be

called from behavior that is modeled at an abstract level
— Concurrency of transactions is obtained by

– Buffering reads and writes
– Having a special wait that execute update function in every call

– Responds to environment as a concurrent process would
— P2P are “registered” during their reset calls
— Update functions run as part of the process that owns the P2P

port/channel

AT, SystemC Evolution, Oct 201723

Conclusions
 Runtime overhead is minor
 It provides a way to enable debug, gather activity information,

force stalls
 It should enable closer match between SystemC model and

Synthesized RTL using HLS
— Goal is to enable sign-off point at SystemC

 Could be considered for standards
— Modeling of Interfaces is an important TODO item in the Synthesis Subset

Standardization

AT, SystemC Evolution, Oct 201724

www.mentor.com

	Presentation Copyright Permission
	Throughput accurate modeling and synthesis of abstract interfaces
	Motivation
	Example: p2p wire interface
	P2P Example
	Basics of the Protocol
	Advantages
	Challenges
	Throughput Accurate
	Approach 1: Forking to Achieving Concurrency
	Approach 1: Forking to Achieving Concurrency
	Approach 1: Forking to Achieving Concurrency
	Approach 2: Concurrent Block for IO
	Approach 3: Emulate Concurrency
	Advantages
	Example of p2p::out<T>
	Update functions for p2p::out<T>
	Transaction functions for p2p::out<T>
	Update Function
	Registering of p2p and Special wait()
	Data Buffering
	Preliminary Results
	Conclusions
	Conclusions
	Slide Number 25

