
SystemC AMS Update

Karsten Einwich

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by COSEDA Technologies GmbH to
use this material in developing all future revisions and
editions of the resulting draft and approved Accellera
Systems Initiative SystemC standard, and in derivative
works based on this standard.

• SystemC AMS Update

– Generalized AC

– Piece wise linear

– Interactive tracing

– Physical domains

• Future thoughts

SystemC AMS update

Agenda

• Provide AC-Implementation for SC-modules (e.g.
implemented digital filter)

• Provide AC-implementation for hierarchical models, which
can not be modelled as composed submodules (e.g. SD-
converter)

• Cross boundaries – e.g. bussystems for AC-simulation

SystemC AMS update

Generalized AC - Motivation

• AC-analysis:

– Calculates linear complex equation system stimulated by AC-sources

– -> Linear frequency dependent transfer function (bode diagram)

• AC noise domain

– solves the linear complex equation system for each noise source contribution (other
source contributions will be neglected)

– adds the results arithmetically

• ELN and LSF description are specified in the frequency domain

• TDF description must specify the linear complex transfer function of the
module inside the callback method ac_processing (otherwise the out values
are assumed zero)

– This transfer function can depend on the current time domain state (e.g. the setting of a
control signal)

SystemC AMS AC Modeling

Small Signal Frequency Domain Analysis (AC-Analysis)

• Linear equation system contribution for LSF/ELN:

𝑞 𝑡 = 𝐴𝑑𝑥 + 𝐵𝑥 → 𝑞 𝑓 = 𝐴𝑗𝜔𝑥 𝑓 + 𝐵𝑥 𝑓 → 0 = 𝐶𝑥 𝑓 − 𝑞 𝑓 (𝐶 = 𝐴𝑗𝜔 + 𝐵)

SystemC AMS AC Modeling

Small-Signal Frequency-Domain Analysis for ELN, LSF and TDF

LSF modelELN model TDF modelComplex linear equation system

Sources

TDF

LSF

LSF

TDF
vp
,n

eln_module lsf_module

k
d
dt

R1

C1

H(s) H(z)

tdf_module
AC AC

SCA_TDF_MODULE(combfilter)
{

sca_tdf::sca_in<bool> in;
sca_tdf::sca_out<sc_int<28> > out;

void set_attributes()
{

in.set_rate(64); // 16 MHz
out.set_rate(1); // 256 kHz

}

void ac_processing()
{
double k = 64.0;
double n = 3.0;

// complex transfer function:
sca_complex h;
h = pow((1.0 – sca_ac_z(-k)) /

(1.0 – sca_ac_z(-1)),n);

sca_ac(out) = h * sca_ac(in) ;
}

SystemC AMS AC Modeling

Frequency Domain Description for TDF Models

void processing()
{

int x, y, i;
for (i=0; i<64; ++i) {

x = in.read(i);
…
out.write(y);

}
SCA_CTOR(combfilter)
{

…
}

};

n

1-

k-

z1-

z- 1
H(z)

=

sf
fj2

ez

=

combfilter

in out

1 2864

Generalized AC

Motivation

Weinan Tang and Weimin Wang

“A single-board NMR spectrometer based on a

software defined radio architecture”

• Each SC-module can be derived from a sca_ac_module base
class

• This base class has a pure virtual method for providing the ac
transfer function

• Each sc_core::sc_port_base connected to a
sc_core::sc_interface can be accessed via
sca_ac_analysis::sca_ac and thus used as an AC-in or outport

• All AC-modules instantiated as childs (lower in hierarchy) of
an sca_ac_module are ignored

Generalized AC

Concept

class sca_ac_object
{
public:

void ac_enable();
void ac_disable();
bool is_ac_enabled();

sca_ac_object();

virtual ~sca_ac_object();
};

class sca_ac_module : public sca_ac_object
{

public:

virtual void ac_processing()=0;
protected:

virtual ~sca_ac_module(){}
};

template<class T>
sca_complex& sca_ac(const sc_core::sc_out<T>&);

template<class T>
const sca_complex& sca_ac(const sc_core::sc_in<T>&);

Generalized AC

Current Implementation

• Base class provides some
“gimmick” methods – to
activate deactivate the ac
module during elaboration

• Base class used to provide
the ac-implementation

• Port access functions

SC_MODULE(mod_lp), sca_ac_analysis::sca_ac_module
{

sc_core::sc_in<int> inp; // input port
sc_core::sc_out<int> outp; // output port

void ac_processing()
{
sca_util::sca_complex in = sca_ac_analysis::sca_ac(inp);

sca_ac_analysis::sca_ac(outp) = sca_ac_analysis::sca_ac_ltf_nd(num,den,in);
}

SC_CTOR(mod_lp)
{
num(0)=1.0;

den(0)=1.0;
den(1)=1.0/(2.0*M_PI*1e3);

}

private:

sca_util::sca_vector<double> num, den;

};

Generalized AC

Example

• Extension to SystemC AMS ELN and LSF

• Permits modelling of non-linear behavior by a piece wise
linear approximation

• Especially efficient for switched circuits

– PWM, DCDC-converter, …

Piece Wise Linear

Motivation

• The SystemC AMS standard defines linear elements for electrical networks and signal flow only

• The COSIDE piece wise linear models permit the use of approximated non-linear elements without
a significant influence on the solver performance and robustness in case of abstract models

• Well suited for non-linear circuits, which have different linear working points (e.g. switched
networks with diodes)

• For ELN we provide an additional double vector parameter pwl_value for all controlled sources
(sca_cccs, sca_ccvs, sca_vccs, sca_vcvs) and for LSF we provide this additional parameter for
sca_lsf::sca_gain

– If the vector is not empty (otherwise the original scalar parameter value is used) it will be interpreted as
piece wise linear characteristic – input-output value pairs

• For ELN we provide piece wise constant voltage controlled resistor and capacitor

Piece Wise Linear

SCA PWL Libraries – Principle

• The vector represents value pairs –
vector size (number of pairs) must be at
least 2

• Before the first and after the last point
the segment will be continued

• The solver will not skip segments – the
solver reduces internally the step width

• sca_eln::sca_cccs, sca_eln::sca_ccvs,
sca_eln::sca_vccs, sca_eln::sca_vcvs,
sca_lsf::sca_gain

Piece Wise Linear

PWL Vector Definition

x x

x

x

in

out

1
-1-2

2

3

4

5

21

pwl_value=sca_create_pair_vector(-2.0,-0.6, -1.0,-0.4, 1.0,0.4, 2.0,5.0)

pwl_value={ {-2.0,-0.6} , {-1.0,-0.4}, {1.0,0.4}, {2.0,5.0} } //C++11

-1

-2

Piece Wise Linear

PWC (piece wise constant) Vector Definition

• The vector represents value pairs – the
vector must contain at least one pair

• Before the first and after the last point
the segment will be continued

• The solver will not skip segments – the
solver reduces internally the step width

• sca_eln::sca_vcc (voltage controlled
capacitor), sca_eln::sca_vcr (voltage
controlled resistor)

pwc_value = sca_create_pair_vector(-2.0,-2.0, -1.0,-0.4, 1.0,0.4, 2.0,5.0)

pwc_value = { {-2.0,-2.0}, {-1.0,-0.4}, {1.0,0.4}, {2.0,5.0} } //C++11

Piece Wise Linear

PWL modelling example – simple diode

-

2

x

x

x

V(V)

I(A)

1/ron

vth vth+1

vth/roff

• Enabling Interactive feature of Cadence Incisive for SystemC
AMS

– Cooperation: NXP-Cadence-COSEDA

– -> vendor independent interface for SystemC AMS defined

– Can/Should be generalized for SystemC ?

Interactive Debug Feature / Extendable and unified Tracing

Motivation / History

• Getting current (at SystemC time) value of ELN nodes, TDF and LSF
signals, current traceable ELN modules and TDF trace variable

– As string (using >> operator)

– As object of the corresponding type

• Callback if a new value is available

• Force / release values for TDF signals (ELN/LSF would structural
change the equation system)

• (Deposit value)

Interactive Debug Feature / Extendable and unifed Tracing

Feature

• virtual bool register_trace_callback(sca_trace_callback, void*);

– typedef void (*sca_trace_callback)(void*);

– Registers callback, which is executed if a new value has been produced,
returns false if the corresponding object does not support tracing – the
callback is called with the given void pointer as argument

• virtual const std::string& get_trace_value() const;

– Returns the current value (as string) of the object at the current SystemC
time (sc_core::sc_time_stamp())

– Returns an empty string, if the object does not support tracing e.g. the
signal is non-causal

Interactive Debug Feature

Interface in sca_traceable_object 1/2

• virtual bool force_value(const std::string&);

– Forces the signal with the value given by the string, the value becomes
valid with the start of the next cluster period, the force only influences the
read’s form the signal – the written and thus traced value remains

– Returns false, if the value cannot be forced (the string cannot be
converted or the object does not support value forcing like electrical
elements)

• virtual void release_value();

– Releases a forced value, the value is released with the start of the next
cluster period

Interactive Debug Feature

Interface in sca_traceable_object 2/2 May also useful for SystemC
signals

• const T& get_typed_trace_value() const;

– Returns the current value of the object at the current SystemC time
(sc_core::sc_time_stamp())

– Will be used by const std::string get_trace_value()

• void force_typed_value(const T&);

– Forces the signal with the value, the value becomes valid with the start of the
next cluster period, the force only influences the read’s form the signal – the
written and thus traced value remains

– The method is used by void force_value(const std::string&)

Interactive Debug Feature

Additional methods for sca_tdf::sca_signal<T> + ports

• Modelling the environment of integrated systems

• Running application scenarios

• Executable specification

SystemC AMS Physical domain Modelling

Motivation

• Physical domains can be modelled using the available
SystemC / SystemC AMS classes

• Physical domain libraries can be generated by derivation using
analogy relations

• If required you can build on top of SystemC/SystemC AMS
unit systems (e.g. using the newest C++ feature)

• -> Missing: debug/tracing cannot recognize the units

SystemC AMS Physical domain Modelling

Requirements

• Discussion whether property annotation is sufficient

– String properties for:

• domain

• Unit

• Virtual sc(a)_interface function (default implementation –
empty string

SystemC AMS Physical domain Modelling

Discussion

• Can we do more generalization?

– E.g. enable customized static analyzes (budget (level, noise,
nonlinearity, …) analysis, power, …)

• Missing exploration capabilities – e.g. which port is connected to a port,
which ports are connected to an interface, …

– Combine TDF / SystemC on primitive level -> easier TLM->TDF
interaction

– Allow direct connection ELN<->LSF

Future thought

