
(Un)Suspend(able)

Mark Burton 

GreenSocs

© Accellera Systems Initiative



Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright 
permission is granted by GreenSocs to use this material in 
developing all future revisions and editions of the resulting 
draft and approved Accellera Systems Initiative SystemC
standard, and in derivative works based on this standard.



Synchronizing simulators and 
Save and Restore!

Syncromesh – it’s all 
about connections 

between things 
moving at different 

speeds!



We are talking about divide simulations 

based on architectural features (like CPU’s 

or Ethernet)

(not on a SystemC thread/method level)

Motivation 1: 
Multiple Threads (and processes)



Time (Stops for nobody?)

• We have some choices:
– Don’t worry about time – let every simulation run at the speed it wants!
– Try to keep within a ‘Quantum’ (Introduced in TLM 2.0)

– SIM1 runs ‘faster’ than SIM2.
– At least once per quantum, the simulations are synchronized.
– SIM1 needs to ‘wait’ for SIM2. 

T=10 T=20

T=10 T=20

T=20

T=20

T=30

T=30

Quantum 1 Quantum 2

S
Y

N
C

SIM1

SIM2



SUSPEND!

• We need a mechanism
to SUSPEND a simulation

while it waits for the other simulations catch up (and send an 
event to continue).

• NB ‘suspend’ exists (!) for individual threads.
• We need to suspend all threads, so that SystemC has nothing 

more to do.



Stop when all threads when you are not in 

a unsuspendable state.

NB b_transport has no way to re-start – no 

way to rebuild the stack.

Motivation 2: 
Save/Restore when it’s 
safe



SOME BACKGROUND…
SystemC 2.3.1…

© Accellera Systems Initiative 8



async_request_update

• async_request_update – allows an external ‘event’ to be 
inserted into a running SystemC kernel in a thread safe way.

• Basis of any (all) communication between two simulations

• Problem : If a simulation runs out of events, then …
we better not stop! 

(And if we have suspended all the threads, that can happen a lot!)

• And we need a single common semaphore



The situation

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

Communication driven by ‘async_request_update’



The problem

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

SystemC runs out of events…

(even though model 1 and 2 are still active)

Simulation dies.



Solution (#1)

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

Catch SystemC ‘just before’ it finishes

in a semaphore,

Release the semaphore on an event 



Solution (#1)

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

In SystemC 2.3.1, to catch SystemC just before it finishes, 

You can post an event into the next delta 

(using sc_time_to_pending_activity)

It adds an extra notification (at least) to each delta. 



Solution is not compose-able

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

For more than one model (from different sources) 

the solution will fail 

DEADLOCK



Compose-able solution for 2.3.2

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

Single shared semaphore.

Triggered from async_request_update



Compose-able solution for 2.3.2

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

Single shared semaphore.

Triggered from async_request_update

This is the critical semaphore 

we will use for suspend…



Details (Available in SystemC 2.3.2+)

• By default the semaphore is not used, SystemC exits normally.

• bool async_attach_suspending // proposed for IEEE 1666-202x

– Prim_channels can elect to attach to an external source of events (and 
therefore request the presence of the semaphore)

• bool async_detach_suspending

– A prim_channel can elect to detach from an external source of events 
(and therefore remove the request for the presence of the 
semaphore). If no prim_channels are attached to external events, the 
semaphore plays no role in simulation.

• The semaphore is only checked (and potentially waited for) if no further 
events are available 

– starvation, which is checked inside the simulation kernel anyway 
(using next_time returns 0), so there is no additional cost here.

• The semaphore is released when async_request_update is called.



SUSPEND
Building on central semaphore

© Accellera Systems Initiative 18



Suspend

• Add a kernel function

• suspend_all()

– Request to suspend all threads (and pending events)

– All threads become un-schedulable 

– (The simulation will run out of schedulable tasks instantly, 
and fall into the ‘semaphore’).

• Unsuspend()

– Request to re-instate all threads (and pending events).

– You can call unsuspend from a async_update method as 
you will not be in the semaphore at that point.

© Accellera Systems Initiative 19



BUT… b_transport and wait() !

• Same old b_transport wait pain !

• If SIM2 is ‘ahead’ of SIM1, and is currently ‘suspended’, 
then we will be BLOCKED

SIM1

Request 
SIM2

b_transport() {

…

wait(…);

}

DEADLOCK



unsuspendable
• Need a mechanism to mark ‘b_transport’s that 

come from an external simulation as 
“unsuspendable”.

HOLD THAT THOUGHT

…



SAVE and RESTORE

• The CCI WG has a proposal to support save/restore.

• An API that will be added to SystemC modules

• Ensure that models can be re-entered from a ‘restore’ call.

• BUT – what happens if a model is in a ‘b_transport’, that has 
called a ‘wait’ ?

• ‘b_transport’ is not restartable on the current transaction.

• We need an ‘un-savable at this point’ mechanism !!!



Unsuspendable/Suspendable

• A thread may mark itself as ‘unsuspendable’.

• This only effects the ‘global’ suspend_all mechanism.

• For save/restore, all b_transports that are non-re-
entrant will have to be non-suspendable.

• For thread sync, all b_transports being processed on 
behalf of an external simulation should be marked as 
non-suspendable.

© Accellera Systems Initiative 23



Save/restore + suspendable

• To do a save:
– Do a ‘suspend_all’, followed by a ‘save’

• To do a restore:
– Do a ‘restore’, followed by a ‘unsuspend_all’

• We use suspend_all/unsuspend_all to make sure that its “safe” to 
save/restore. (Models are not inside b_transport’s that have called 
‘wait’).

• Of course it’s possible to make a simulation that will never suspend
• Some work will be required to make sure models don’t always call a 

blocking ‘b_transport’.



new API

• The existing suspend/resume API does not include a 
‘nesting’ mechanism, and it’s not possible to add it in 
user-space.

• An additional API is required, the question is WHAT?

• Current proposal:

void sc_suspend_all(sc_simcontext* csc=sc_get_curr_simcontext)

void sc_unsuspend_all(sc_simcontext* csc=sc_get_curr_simcontext)

void sc_unsuspendable()

void sc_suspendable()



suspend_all/unsuspend_all :

• Requests the kernel to ‘atomically suspend’ all processes (using the same 

semantics as the thread suspend() call). This is atomic in that the kernel will 

only suspend all the processes together, such that they can be suspended 

and unsuspended without any side effects. 
– Calling suspend_all(), and subsiquently calling unsuspend_all() will have no effect on the 

suspended status of an individual thread.

• A process may call suspend_all() followed by unsuspend_all, the calls 

should be ‘paired’, (multiple calls to either suspend_all() or unsuspend_all() 

will be ignored).

• Outside of the context of a process, it is the programmers responsibility to 

ensure that the calls are paired.

• As a consequence, multiple calls to suspend_all() may be made (within 

separate processes, or from within sc_main). So long as there have been 

more calls to suspend_all() than to unsuspend_all(), the kernel will suspend 

all processes.

© Accellera Systems Initiative 26



unsusbendable()/suspendable()

• This pair of functions provides an ‘opt-out’ for 
specific process to the suspend_all. The 
consequence is that if there is a process that 
has opted out, the kernel will not be able to 
suspend_all (as it would no longer be atomic).

• These functions can only be called from within a 
process.

• A process should only call 
suspendable/unsuspendable in pairs (multiple 
calls to either will be ignored).

© Accellera Systems Initiative 27



Expected sequence

© Accellera Systems Initiative 28

Time=100 Time=200

‘do’ a transaction

Post box
async_update_request

Update() {

…

}

while (1) 

wait(…)

unsuspendable()

b_transport(…)

suspendable()

}



Additional proposals

– dont_terminate A way to wrap a thread with a 

while(1) {wait(trigger) … }

• Such a non terminating thread is (probably?) unsuspendable.

– NS_THREAD = a SC thread that is sensitive to an event (like 
a cthread), and who’s method is marked as unsuspendable
(it will always complete).

– We also need is_suspending/ed()

– Some sort of “suspended()” simulation stat callback

© Accellera Systems Initiative 29



Status

• Initial patch exists

• But – we need help !

• This is going to be a big change to the way SystemC can be used ! 
It’s important for large simulations to take advantage of parallelism.

• Please be in touch with Mark Burton @ GreenSocs.com who is 
leading this effort.


