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SystemC Traces

• Temporally ordered records of value changes

• Generated for entities selected by sc_trace

void sc_trace(sc_trace_file*, const object&, const std::string& );

template <class T>

void sc_trace(sc_trace_file*, const sc_signal_in_if<T>&, const std::string& );

template <class T>

void sc_trace(sc_trace_file*, const sc_in<T>&, const std::string& );

template <class T>

void sc_trace(sc_trace_file*, const sc_inout<T>&, const std::string& );

• sc_trace

– Is defined for primitive C/C++ and SystemC types.

– Can be defined for custom types using primitive  sc_trace .
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Tracing in SystemC - Bottlenecks

• Modern, large-scale system-level models:

– Tens of thousands of traceable objects

– Thousands of modules

– Many levels of hierarchy

• The following proposals address  

– Usability and developer efficiency 

– Tracing performance 
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Usability Bottleneck

• One explicit sc_trace needed per traced object.

• User code needed for passing around trace file handles across 
hierarchy.

• Custom types need to define sc_trace even if tracing of 
objects of the type is not required. 

• It can become a major contributor to overall LoC.

• It can become a source of programming errors and maintenance 
effort.
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Performance Bottleneck

• Pulling/polling implementation irrespective of object type:
– C++ and SystemC primitive data types

– signals and buffers

• sc_trace_file::cycle()

– Iterates over all traced objects at least once per timed notification phase.

– Checks if the value of the object has changed and records the value if it 
has.

• Performance affected by the number of inactive signals.

• The cost of object’s comparison operator affects performance.
– especially costly for vectors (e.g. logic vectors) and custom aggregate types

• Redundant comparison operations for signals
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Usability Bottleneck - Proposal

• Treat all SystemC objects as potentially traceable.
virtual void sc_object::trace(sc_trace_file* tf ) const;

• This will increase efficiency and flexibility. for example:
– Tracing any SystemC object by name (e.g. from a configuration file, 

tool)

– Tracing multiple SystemC object by traversing the SystemC object 
hierarchy

– Tracing local variables can be added to the trace()override for 
sc_module

• This is gated by the current standard 
– Annex C.O (deprecated features): Member function trace() of 

classes sc_object, sc_signal, sc_clock, and sc_fifo (Use 
sc_trace instead)
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Experimental Results
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Model Number of sc_trace() calls

System-level Virtual Prototype A 18000

System-level Virtual Prototype B 6000

void trace_all(sc_object* object, sc_trace_file* tf) {

object->trace(tf);

std::vector<sc_object*> children= object->get_child_objects();

for(unsigned i=0;i<children.size();i++)

trace_all(children[i], tf);

}

The following snippet was used instead of explicit sc_trace calls. A fine-granular 

control of tracing can be implemented using CCI and parameters. 



Performance Bottleneck – Solution 1

• An event-driven, push-based sc_trace_file : 
– Utilize the value_changed_event() of  sc_signal_in_if.

– Spawn a monitor SC_METHOD per traced sc_signal_in_if derivate.

• Significant performance improvement for sc_signals of 

– User-defined aggregate types

– SystemC primitive types with high comparison cost

• Caveats:
– Traced values are off by one delta cycle.

– It is delta cycle tracing by nature.

© Accellera Systems Initiative 9



Experimental Results

Number of Idle Signals (Aggregate Data Type) Speedup

0 0.94

100 1.13

500 1.5

1000 1.9

2500 3.15

5000 6.7
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Achieved a speed-up of 4x-5x in a large system-level virtual prototype. 



Performance Bottleneck – Solution 2

• Improve pull-based tracing using update sets.

• An update set maintains a list of traces which may change 
together.

• For signals, update sets can be utilized to reduce the number 
of comparisons significantly.

• This will have major impact on performance especially for 
types with high comparison costs.
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Performance Bottleneck – Solution 2

The required updates to the standard/LRM:
Section 6.8.4,
template <class T>

void sc_trace(sc_trace_file*,const sc_in<T>&,const std::string&);

Section 6.10.5 
template <class T>

void sc_trace(sc_trace_file*,const sc_inout<T>&,const std::string&);

“Function sc_trace shall trace the channel to which the port passed as the 
second argument is bound (see 8.1) by calling function sc_trace with a second 
argument of type const T& (see 6.4.3) const sc_signal_in_if<T>&” 

This update is required to allow the delegation of the trace call to 
the sc_trace overload for sc_signal (see 8.1.6).
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Experimental Results
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Number of Idle Signals (Aggregate Data Type) Speedup

0 1

100 1.12

500 1.4

1000 1.7

2500 2.3

5000 3.8



Conclusion

• Minor changes to the SystemC Standard and the LRM 
will enable:

– Improving the usability of SystemC tracing.

– Implementation of standard-compliant efficient solutions.

• Get involved in the ongoing discussions in the LWG 
forum!
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Backup
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sc_update_occurred_if 

class sc_update_occurred_if : public virtual sc_interface

{

public:

typedef /*implementation-defined*/ change_stamp;

virtual bool update_occurred() const = 0;

virtual bool

update_occurred_since(change_stamp& last_stamp) const = 0;

protected:
sc_update_occurred_if() = default;
~sc_update_occurred_if() = default;

};

sc_update_occurred_if::change_stamp 
sc_get_current_change_stamp();
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