
Improving the Usability and 
Performance of Tracing in SystemC

Rauf Salimi, Philipp Hartmann 

© Accellera Systems Initiative



Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright 
permission is granted by Intel Corporation to use this 
material in developing all future revisions and editions of 
the resulting draft and approved Accellera Systems 
Initiative SystemC standard, and in derivative works based 
on this standard.



SystemC Traces

• Temporally ordered records of value changes

• Generated for entities selected by sc_trace

void sc_trace(sc_trace_file*, const object&, const std::string& );

template <class T>

void sc_trace(sc_trace_file*, const sc_signal_in_if<T>&, const std::string& );

template <class T>

void sc_trace(sc_trace_file*, const sc_in<T>&, const std::string& );

template <class T>

void sc_trace(sc_trace_file*, const sc_inout<T>&, const std::string& );

• sc_trace

– Is defined for primitive C/C++ and SystemC types.

– Can be defined for custom types using primitive  sc_trace .

© Accellera Systems Initiative 3



Tracing in SystemC - Bottlenecks

• Modern, large-scale system-level models:

– Tens of thousands of traceable objects

– Thousands of modules

– Many levels of hierarchy

• The following proposals address  

– Usability and developer efficiency 

– Tracing performance 

© Accellera Systems Initiative 4



Usability Bottleneck

• One explicit sc_trace needed per traced object.

• User code needed for passing around trace file handles across 
hierarchy.

• Custom types need to define sc_trace even if tracing of 
objects of the type is not required. 

• It can become a major contributor to overall LoC.

• It can become a source of programming errors and maintenance 
effort.

© Accellera Systems Initiative 5



Performance Bottleneck

• Pulling/polling implementation irrespective of object type:
– C++ and SystemC primitive data types

– signals and buffers

• sc_trace_file::cycle()

– Iterates over all traced objects at least once per timed notification phase.

– Checks if the value of the object has changed and records the value if it 
has.

• Performance affected by the number of inactive signals.

• The cost of object’s comparison operator affects performance.
– especially costly for vectors (e.g. logic vectors) and custom aggregate types

• Redundant comparison operations for signals

© Accellera Systems Initiative 6



Usability Bottleneck - Proposal

• Treat all SystemC objects as potentially traceable.
virtual void sc_object::trace(sc_trace_file* tf ) const;

• This will increase efficiency and flexibility. for example:
– Tracing any SystemC object by name (e.g. from a configuration file, 

tool)

– Tracing multiple SystemC object by traversing the SystemC object 
hierarchy

– Tracing local variables can be added to the trace()override for 
sc_module

• This is gated by the current standard 
– Annex C.O (deprecated features): Member function trace() of 

classes sc_object, sc_signal, sc_clock, and sc_fifo (Use 
sc_trace instead)

© Accellera Systems Initiative 7



Experimental Results

© Accellera Systems Initiative 8

Model Number of sc_trace() calls

System-level Virtual Prototype A 18000

System-level Virtual Prototype B 6000

void trace_all(sc_object* object, sc_trace_file* tf) {

object->trace(tf);

std::vector<sc_object*> children= object->get_child_objects();

for(unsigned i=0;i<children.size();i++)

trace_all(children[i], tf);

}

The following snippet was used instead of explicit sc_trace calls. A fine-granular 

control of tracing can be implemented using CCI and parameters. 



Performance Bottleneck – Solution 1

• An event-driven, push-based sc_trace_file : 
– Utilize the value_changed_event() of  sc_signal_in_if.

– Spawn a monitor SC_METHOD per traced sc_signal_in_if derivate.

• Significant performance improvement for sc_signals of 

– User-defined aggregate types

– SystemC primitive types with high comparison cost

• Caveats:
– Traced values are off by one delta cycle.

– It is delta cycle tracing by nature.

© Accellera Systems Initiative 9



Experimental Results

Number of Idle Signals (Aggregate Data Type) Speedup

0 0.94

100 1.13

500 1.5

1000 1.9

2500 3.15

5000 6.7

© Accellera Systems Initiative 10

Achieved a speed-up of 4x-5x in a large system-level virtual prototype. 



Performance Bottleneck – Solution 2

• Improve pull-based tracing using update sets.

• An update set maintains a list of traces which may change 
together.

• For signals, update sets can be utilized to reduce the number 
of comparisons significantly.

• This will have major impact on performance especially for 
types with high comparison costs.

© Accellera Systems Initiative 11



Performance Bottleneck – Solution 2

The required updates to the standard/LRM:
Section 6.8.4,
template <class T>

void sc_trace(sc_trace_file*,const sc_in<T>&,const std::string&);

Section 6.10.5 
template <class T>

void sc_trace(sc_trace_file*,const sc_inout<T>&,const std::string&);

“Function sc_trace shall trace the channel to which the port passed as the 
second argument is bound (see 8.1) by calling function sc_trace with a second 
argument of type const T& (see 6.4.3) const sc_signal_in_if<T>&” 

This update is required to allow the delegation of the trace call to 
the sc_trace overload for sc_signal (see 8.1.6).

© Accellera Systems Initiative 12



Experimental Results

© Accellera Systems Initiative 13

Number of Idle Signals (Aggregate Data Type) Speedup

0 1

100 1.12

500 1.4

1000 1.7

2500 2.3

5000 3.8



Conclusion

• Minor changes to the SystemC Standard and the LRM 
will enable:

– Improving the usability of SystemC tracing.

– Implementation of standard-compliant efficient solutions.

• Get involved in the ongoing discussions in the LWG 
forum!

© Accellera Systems Initiative 14



Backup

© Accellera Systems Initiative



sc_update_occurred_if 

class sc_update_occurred_if : public virtual sc_interface

{

public:

typedef /*implementation-defined*/ change_stamp;

virtual bool update_occurred() const = 0;

virtual bool

update_occurred_since(change_stamp& last_stamp) const = 0;

protected:
sc_update_occurred_if() = default;
~sc_update_occurred_if() = default;

};

sc_update_occurred_if::change_stamp 
sc_get_current_change_stamp();

© Accellera Systems Initiative 16


