
Methodology for Defining
Bus Specific Extensions to TLM2.0

(Programmer’s View & Architecture View)

Umesh Sisodia, usisodia@circuitsutra.com

CEO, CircuitSutra Technologies

© Accellera Systems Initiative 1

TLM2.0 Overview
TLM2.0 - Accellera standard for the modelling of memory mapped buses

1. Trait Class:

struct tlm_base_protocol_types

{

typedef tlm_generic_payload tlm_payload_type;

typedef tlm_phase tlm_phase_type;

}

2. Protocol Rules

© Accellera Systems Initiative 2

Base Protocol
Bus Agnostic Generic protocol

Generic payload

Command

Address

Data

Byte enables

Response status

Phases

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Initiator Target

Sockets
Templatized with base protocol

tlm_initiator_socket tlm_target_socket

Interoperability Layer

Core Interfaces
TRANSPORT INTERFACES

void b_transport(TRANS& trans, sc_core::sc_time& t)

tlm_sync_enum nb_transport_fw(TRANS& trans, PHASE& phase, sc_core::sc_time& t)

tlm_sync_enum nb_transport_bw(TRANS& trans, PHASE& phase, sc_core::sc_time& t);

DEBUG INTERFACE

DMI INTERFACES

TLM2.0 – Need for extension
• Supporting SoC Bus specific features

– ARM - AMBA AXI

– SiFive TileLink Bus

– Proprietary Buses

– Western Digital – OmniExtend :Access
off chip memory space

• Supporting lower abstraction levels
– TLM2.0 supports Loosely Timed (LT) &

Approximately Timed (AT) abstraction

– Cycle Accurate (CA) requires extension
of TLM2.0

© Accellera Systems Initiative 3

Bus features not supported by

TLM2.0

Cache Coherency

Atomic Operations

Burst Operations

Messages - LogicalData, ArithmeticData, Intent

Addressing options

Conformance level

Protection unit

QoS support

DVM support

Transaction hints

Master ID

..

© Accellera Systems Initiative 4

TLM ABSTRACTION LEVELS
Widely used abstraction levels for Memory Mapped Buses

TL4 (TLM2.0 LT) TL3 (TLM2.0 AT) TL1 (TLM2.0 CA)
• Entire burst is transmitted as a

single entity

• Two timing points: Start & End of
transaction

• b_transport
– tlm_generic_payload

• Use Case: Pre-silicon firmware
development

• Entire burst is transmitted as a

single entity

• Four timing points

• nb_transport
– tlm_generic_payload

– tlm_phase: BEGIN_REQ, END_REQ,

BEGIN_RESP, END_RESP

• Use Case: Architecture Exploration

• A burst is broken into individual
beats equivalent to bus_width

• A beat is transmitted as a single
entity

• Timing points after every beat

• Extends TLM2.0

• Use Case: Architecture
Exploration, Verification

PROGRAMMER’S VIEW

EXTENSIONS to TLM2.0

• Payload extensios for bus

specific features

ARCHITECTURE VIEW EXTENSIONS to TLM2.0

• Payload extensions for bus specific features
Superset of Programmer’s View Extensions

• Phase Extensions
BEGIN_DATA, END_DATA

BEGIN_DATA, END_DATA, BEGIN_BURST, END_BURST,

Any other phase specific to control signals / functionality not covered in payload extensions

© Accellera Systems Initiative 5

ABSTRACTION LEVELS
Sequence Diagrams: WRITE Transaction

Master

b_transport

Slave

Command

Data
Data
Data
Data

Data

Status

return (t ns)

Master

nb_transport_fw

Slave

nb_transport_bw

Command

Data
Data
Data
Data

Data

Status

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Master

nb_transport_fw

Slave

nb_transport_bw

Command

Data
Data
Data
Data

Data

Status

BEGIN_REQ

END_BURST

BEGIN_RESP

END_RESP

BEGIN_BURST

BEGIN_END_BURST

BEGIN_DATA

BEGIN_DATA

BEGIN_DATA

END_DATA

END_DATA

END_DATA

END_DATA

END_REQ

TL4 (TLM2.0 LT) TL3 (TLM2.0 AT) TL3 (TLM2.0 CA)

© Accellera Systems Initiative 6

TL4 (TLM2.0 LT) TL3 (TLM2.0 AT) TL3 (TLM2.0 CA)
Master

b_transport

Slave

Command

Data
Data
Data
Data

Data

return (t ns)

Master

nb_transport_fw

Slave

nb_transport_bw

Command

Data
Data
Data
Data

Data

BEGIN_REQ

END_REQ

BEGIN_RESP

END_RESP

Master

nb_transport_fw

Slave

nb_transport_bw

Command

Data
Data
Data
Data

Data

BEGIN_REQ

END_BURST

END_RESP

BEGIN_END_BURST

BEGIN_RESP

BEGIN_DATA

BEGIN_RESP

END_DATA

END_DATA

END_DATA

END_REQ

BEGIN_DATA

BEGIN_DATA

END_DATA

ABSTRACTION LEVELS
Sequence Diagrams: READ Transaction

Opportunity for standardization
Potential Requirement

• Consistence method for Bus specific Extensions
– Programmer’s View extensions
– Architecture View extensions

• Extending TLM2.0 for Cycle Accurate abstraction
• Mix & match models at different abstraction

levels in the same simulation
• Change the abstraction level at run time
• Mix & match models having different bus

protocols, different bus width
• Ease the model development
• Ease the development of adaptors

© Accellera Systems Initiative 7

Requirement for the standardization of a

cycle accurate coding style remains an

open issue, possibly to be addressed by a

future Accellera Systems Initiative

standard.

SystemC Language Reference

Manual

TLM2.0 Standard released in 2008

Widely being used in the industry

Right time to review the best

practices. Enhance the standard to

cover all aspects of memory

mapped bus modelling

TLM2.0 Extension Mechanism

© Accellera Systems Initiative 8

Ways to extend TLM2.0 Base Protocol

A. Use the generic payload directly, with ignorable extensions

B. Define a new protocol traits class containing a typedef for
tlm_generic_payload.

C. Define a new protocol traits class and a new transaction type

The option (B) & (C) enforce the compile time bindability checks of sockets.

Hence the master socket will bind with only that slave socket which has the
exactly same protocol extension

Our methodology

Use Option A, it provides greater flexibility and code re-usability

Run time bindability check. To check the compatibility of connecting sockets

BUS_WIDTH configuration at run time

1. Trait Class:

struct tlm_base_protocol_types

{

typedef tlm_generic_payload tlm_payload_type;

typedef tlm_phase tlm_phase_type;

}

2. Protocol Rules

Base Protocol
Bus Agnostic Generic protocol

Convenience Sockets
Encapsulate BUS protocol & complex TLM rules

© Accellera Systems Initiative 9

MASTER

Module

Initiator Conv Socket

Transport

LayerConv

API

Bus FSM

TileLink
Config

Params

Slave

Module

Initiator Conv Socket

Transport

Layer Conv

API

Bus FSM

TileLink
Config

Params

b_transport

nb_transport

Debug, DMI

TLM2.0 Core Interfaces

Transport Layer
• TLM2.0 Core interfaces

Convenience Layer
• Convenience APIs

– Bus protocol independent

– Abstraction Independent

– Easy to use APIs

– Model developers do not worry
about the complex bus protocol
and TLM rules

• Run time bindability

• Configurable bus width

• Configurable Abstraction Level

• Memory Manager

• Automatic DMI usage

Bus protocol FSM
• Bus specific TLM2.0 Extensions:

– Programmer View

– Architecture View

• Supports Various Abstraction
Levels
– TL4: TLM2.0 LT

– TL3: TLM2.0 AT

– TL1: CA

Elaboration Time Config Params

• buswidth, read_buswidth, write_buswidth

• Clock period

• Max Outstanding Transactions: READ / WRITE

Simulation Time Config Params

• Abstraction Levels (TL4, TL3, TL4)

• Tracing ON / OFF

Convenience Sockets

© Accellera Systems Initiative 10

Initiator Conv Socket

Transport

Layer

Conv

API

Bus FSM

TileLink
Config

Params

Initiator Conv Socket

Transport

Layer

Conv

API

Bus FSM

TileLink
Config

Params

TLM2.0 Core Interfaces

By changing the Bus FSM implementation we can

quickly get the convenient socket for any SoC bus

Initiator Conv Socket

Transport

Layer

Conv

API

Bus FSM

AMBA AXI
Config

Params

Initiator Conv Socket

Transport

Layer

Conv

API

Bus FSM

AMBA AXI
Config

Params

TLM2.0 Core Interfaces

Initiator Conv Socket

Transport

Layer

Conv

API

Bus FSM

TLM2.0 BP
Config

Params

Initiator Conv Socket

Transport

Layer

Conv

API

Bus FSM

TLM2.0 BP
Config

Params

TLM2.0 Core Interfaces

TileLink Bus

TileLink_conv_initiator_socket<BUSWIDTH> i_socket

TileLink_conv_target_socket<BUSWIDTH> t_socket

AMBA Bus

AMBA_conv_initiator_socket<BUSWIDTH> i_socket

AMBA_conv_target_socket<BUSWIDTH> t_socket

TLM2.0 Base Protocol

TLM20_conv_initiator_socket<BUSWIDTH> i_socket

TLM20_conv_target_socket<BUSWIDTH> t_socket

Convenience Sockets

© Accellera Systems Initiative 11

Configurable Bus width

• TLM2.0 Sockets: BUSWIDTH template parameter to

enforce compile time bindability:

tlm_initiator_socket <BUSWIDTH>

tlm_target_socket <BUSWIDTH>

• Convenience socket
– Supports BUSWIDTH template parameter. Makes it compatible with

TLM2.0

– Also supports to run time configuration of BUSWIDTH using config

parameter. To activate this, set the template parameter value to 0

TileLink_conv_initiator_socket<0>

TileLink_conv_target_socket<0>

In-built DMI Handling

• Initiator Conv socket automatically uses DMI at TL4

abstraction level If the connected slave model support DMI,

Run time bindability

• Handshake between Initiator and Target socket during
elaboration phase

• TLM_IGNORE_COMMAND sent with the set of
parameters to check

• Following config parameters are checked for
compatibility
– Buswidth, read_buswidth, write_buswidth

– clock

Changing the abstraction level at run time

• Initiator conv socket have a config parameter to set
abstraction level at run time

• Initiator communicates change in abstraction to target
using TLM_IGNORE_COMMAND

• Slave adjust itself to new abstraction level

Convenience Sockets – Master Convenience APIs

© Accellera Systems Initiative 12

Get Transaction Pointer
tlm_generic_payload* get_trans(uint32_t data_size, uint32_t be_size)

tlm_generic_payload * get_trans_b(tlm::tlm_command cmd, uint32_t data_size, uint32_t be_size = 0)

tlm_generic_payload * get_trans_nb(tlm::tlm_command cmd, uint32_t data_size, uint32_t be_size=0,

READ & WRITE:

• Blocking APIs
void request_read_b(tlm::tlm_generic_payload &trans, sc_time& delay)

void request_write_b(tlm::tlm_generic_payload &trans, sc_time& delay)

• Blocking APIs with Callback visitor object
void request_read_b(tlm::tlm_generic_payload &trans, master_visitor_r &rcallback_obj, sc_time& delay)

void request_write_b(tlm::tlm_generic_payload &trans, master_visitor_w &wcallback_obj, sc_time& delay)

• Non Blocking APIs with Callback visitor object
void request_read_nb(tlm::tlm_generic_payload &trans, master_visitor_r &rcallback_obj, sc_time& delay)

void request_write_nb(tlm::tlm_generic_payload &trans, master_visitor_w &wcallback_obj, sc_time& delay)

DEBUG, DMI (for non end point master),

Other Misc functionality (Transaction Priority change etc..)

Forward APIs: Called by the model, Implemented in Convenient Socket

ABSTRACTION INDEPENDENT
The actual transaction may be broken into

several phases and requires multiple forward

and backward transport calls between master

and slave socket.

All this handling is done within the

convenience socket, the IP model is relieved

from this complex handling

Convenience Sockets – Master Convenience APIs

© Accellera Systems Initiative 13

Callback Visitor for Read Transaction
request_status read_phase_data(boost::function0<void > resume_read, tlm::tlm_generic_payload &trans, uint32_t offset, uint32_t size, uint32_t& wait_clock_cycle,

request_level r_level)

• Called after every READ_DATA phase of READ transaction

• request_level: end_of_phase, end_of_burst, end_of_transaction

• Return Value: OK, WAIT_STATE, WAIT_STATE_START

– WAIT_STATE - Insert wait state for wait_clock_cycle

– WAIT_STATE_START - Insert indefinite wait state, will be resumed by calling resume_read

Backward APIs: Called by the Convenience socket, Implemented in the model

• Model registers these APIs with the convenience layer through callback visitor objects while submitting the READ /

WRITE transactions

• Called by the convenience layer at different timing points of during the lifecycle of a transaction

Callback Visitor for WRITE Transaction
write_phase_data(tlm::tlm_generic_payload &trans, uint32_t offset, uint32_t& size)

• Called after every WRITE_DATA phase of WRITE transaction

request_status write_status (boost::function0<void > resume_write_status, tlm::tlm_generic_payload &trans, uint32_t& wait_clock_cycle)

• Called to communicate the response of the write status sent by slave to master

© Accellera Systems Initiative 14

Sequence Diagram: Master
Blocking READ: with & without callback

© Accellera Systems Initiative 15

Sequence Diagram: Master
Non Blocking READ Command

Convenience Sockets – Slave Convenience APIs
Work in Progress ..

© Accellera Systems Initiative 16

• Slave to register the READ / WRITE handler with the conv socket. These will be called

whenever the READ / WRITE transaction is received from master.

• Slave to register callback functions per transaction object. These will be called by conv

socket at different timing points in the transaction

• Slave to have the option to provide / consume data in various units: One beat at a time, One

burst at a time, Entire transaction in one go

• Slave should be able to insert wait state in the middle of a transaction

• Standard interface for DMI / Debug similar to TLM2.0 simple target socket

Thank you for your time

info@circuitsutra.com

© Accellera Systems Initiative 17

