
Code-Analysis and Metrics
for SystemC

Tim Kraus, Ingo Feldner

Robert Bosch GmbH

Corporate Research and Advance Engineering

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by Robert Bosch GmbH to use this
material in developing all future revisions and editions of
the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based
on this standard.

Code-Analysis for SystemC
Overview

© Accellera Systems Initiative 3

(1) What is it about?

(2) What do we have?

(3) Why do we need more?

(4) What do we need?

Code-Analysis for SystemC
(1) What is it about?

• The request for virtual prototypes in different applications is getting
bigger

• So more and more models are around - developed in various contexts
– Model developers are not necessarily C++ software-experts
– New challenges come up in terms of maintaining and sharing models!

• State of the art in software development is: Static Code Analysis
– We must make use of this technology for SystemC!

• For functional and performance evaluation: Dynamic Analysis
(“Simulation Based”) → Not in focus here

© Accellera Systems Initiative 4

Code-Analysis for SystemC
(2) What do we have?

• Many proven (commercial and free) tools for static code-analysis
for C and C++
– Check for stability, runtime errors
– Check of quality metrics like complexity, maintainability, style
– Find common bugs in safety-critical embedded-systems according to a

rulesets
(like MISRA-C++ or CERT)

• Common Problem: How can a big library be handled? (like QT,
OpenCV, Boost, SystemC)
– Scanning the lib is not really an option!?

• Significantly increased scan times
• Additional information needed about compiler and host system (conditional

compiles)
• Findings in the lib are not in the responsibility of the users!

© Accellera Systems Initiative 5

Code-Analysis for SystemC
(2) Example “easy”: Requirements

© Accellera Systems Initiative 6

SC_MODULE(easy) {
SC_HAS_PROCESS(easy);

easy(sc_module_name name) {

SC_THREAD(foo);
SC_METHOD(bar);

}

void foo(void);
void bar(void);

sc_event explosion;
sc_in<bool> fuze;

};

Scanner needs to know
these macros!

Scanner needs to know
about the types!

Code-Analysis for SystemC
(3) Why do we need more?

• No well supported way to analyze SystemC specific constructs available!

• Increase quality of SystemC models and create a common understanding

• Establish metrics: objective and quantitative measure for model quality
– Common base for development

• Benefit for Model Developers:
– Increased maintainability reduces total cost of ownership
– Prove the quality of own work

• Benefit for VP Users / System Builder:
– Established way to define requirements for the purchased model

• Benefit for Tool Suppliers:
– Integrate support for code-scanners as a new feature to increase usability

of the tool

© Accellera Systems Initiative 7

Code-Analysis for SystemC
(4) What do we need?

• Input from experienced SystemC programmers about possible issues
– Problems that are not detected by the compiler but occur at runtime (“port not bound”)
– Code-constructs that are known as bad to maintain
– Code-constructs that are known to be bad for simulation performance

• Classification of the issues
– By detection mechanism
– By severity (bugs, warnings, code-smells, performance)

• Best for everyone: Common understanding of high-quality SystemC Code in
the community
– Make the ruleset open and free to use
– Make the rules and metrics usable for a large number of development environments

© Accellera Systems Initiative 8

Code-Analysis for SystemC
(4) What do we need?

© Accellera Systems Initiative 9

Adding Thread / Method requires
SC_HAS_PROCESS!

Infinite loop without wait() will block the
simulation

Infinite Loop in SC_METHOD is suspect

wait() in SC_METHOD will cause runtime
error.

class easy : sc_module {
SC_HAS_PROCESS(easy);

easy(sc_module_name name) {
SC_THREAD(foo);
SC_METHOD(bar);

}

void foo(void) {
while (true) {

//... do thread-stuff ...
}

}

void bar(void) {
while (true) {

//... do method-stuff ..
wait(10, SC_US);

}
}

};

Code-Analysis for SystemC
(4) What do we need?

• Precondition: make existing C++ Analyzers work for SystemC (library issue)

• A tool to work with:

What is a well working system for you?

Contribute with your experiences!

© Accellera Systems Initiative 10

Bauhaus

…

Clang
Analyzer

PCLint

Coverity

SonarQube
PVS-

Studio

Astrée

CppCheck

© Accellera Systems Initiative 11

Code-Analysis for SystemC
(4) What do we need?

Publish Document

(Whitepaper?)

• Application oriented

• Tool-independent

• Based on standard

SystemC

Enable
SystemC
scanning

Describe
Rules

Implement
Rules

Metrics

Make rules usable in a

scanner-tool

• Classified by severity

• Keep implementation

as generic as possible

Broadly recognized

acceptance criteria

• Can be used when

contracting a model

implementation

Use it for

SystemC

models!

Tool Parameters

• Best practices

• Tool dependent

settings / config files

Step by step...

© Accellera Systems Initiative 12

LET’S OPEN UP THE DISCUSSION!

If you are interested to join the activity:

→ See Accellera announcement https://forums.accellera.org/

→ Contact us directly per mail

... until end of 2019!

tim.kraus@de.bosch.com

ingo.feldner@de.bosch.com

https://forums.accellera.org/

