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Code-Analysis for SystemC
Overview
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(1) What is it about?

(2) What do we have?

(3) Why do we need more?

(4) What do we need?



Code-Analysis for SystemC
(1) What is it about?

• The request for virtual prototypes in different applications is getting 
bigger

• So more and more models are around - developed in various contexts
– Model developers are not necessarily C++ software-experts
– New challenges come up in terms of maintaining and sharing models!

• State of the art in software development is: Static Code Analysis
– We must make use of this technology for SystemC!

• For functional and performance evaluation: Dynamic Analysis 
(“Simulation Based”) → Not in focus here
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Code-Analysis for SystemC
(2) What do we have?

• Many proven (commercial and free) tools for static code-analysis 
for C and C++
– Check for stability, runtime errors
– Check of quality metrics like complexity, maintainability, style
– Find common bugs in safety-critical embedded-systems according to a 

rulesets
(like MISRA-C++ or CERT )

• Common Problem: How can a big library be handled? (like QT, 
OpenCV, Boost, SystemC)
– Scanning the lib is not really an option!?

• Significantly increased scan times
• Additional information needed about compiler and host system (conditional 

compiles)
• Findings in the lib are not in the responsibility of the users!
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Code-Analysis for SystemC
(2) Example “easy”: Requirements
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SC_MODULE(easy) {
SC_HAS_PROCESS(easy);

easy(sc_module_name name) {

SC_THREAD(foo);
SC_METHOD(bar);

}

void foo(void);
void bar(void);

sc_event explosion;
sc_in<bool> fuze;

};

Scanner needs to know 
these macros!

Scanner needs to know 
about the types!



Code-Analysis for SystemC
(3) Why do we need more?

• No well supported way to analyze SystemC specific constructs available!

• Increase quality of SystemC models and create a common understanding

• Establish metrics: objective and quantitative measure for model quality
– Common base for development

• Benefit for Model Developers:
– Increased maintainability reduces total cost of ownership
– Prove the quality of own work

• Benefit for VP Users / System Builder:
– Established way to define requirements for the purchased model

• Benefit for Tool Suppliers:
– Integrate support for code-scanners as a new feature to increase usability

of the tool
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Code-Analysis for SystemC
(4) What do we need?

• Input from experienced SystemC programmers about possible issues
– Problems that are not detected by the compiler but occur at runtime (“port not bound”)
– Code-constructs that are known as bad to maintain
– Code-constructs that are known to be bad for simulation performance 

• Classification of the issues
– By detection mechanism
– By severity (bugs,  warnings,  code-smells,  performance)

• Best for everyone: Common understanding of high-quality SystemC Code in
the community
– Make the ruleset open and free to use
– Make the rules and metrics usable for a large number of development environments

© Accellera Systems Initiative 8



Code-Analysis for SystemC
(4) What do we need?
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Adding Thread / Method requires 
SC_HAS_PROCESS!

Infinite loop without wait() will block the 
simulation

Infinite Loop in SC_METHOD is suspect

wait() in SC_METHOD will cause runtime 
error.

class easy : sc_module {
SC_HAS_PROCESS(easy);

easy(sc_module_name name) {
SC_THREAD(foo);
SC_METHOD(bar);

}

void foo(void) {
while (true) {

//... do thread-stuff ...
}

}

void bar(void) {
while (true) {

//... do method-stuff ..
wait(10, SC_US);

}
}

};



Code-Analysis for SystemC
(4) What do we need?

• Precondition: make existing C++ Analyzers work for SystemC (library issue)

• A tool to work with:

What is a well working system for you?

Contribute with your experiences!
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Bauhaus

…

Clang 
Analyzer

PCLint

Coverity

SonarQube
PVS-

Studio

Astrée

CppCheck
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Code-Analysis for SystemC
(4) What do we need?

Publish Document 

(Whitepaper?)

• Application oriented 

• Tool-independent

• Based on standard 

SystemC

Enable 
SystemC 
scanning

Describe 
Rules

Implement 
Rules

Metrics

Make rules usable in a 

scanner-tool

• Classified by severity

• Keep implementation 

as generic as possible

Broadly recognized 

acceptance criteria

• Can be used when 

contracting a model 

implementation

Use it for

SystemC 

models!

Tool Parameters

• Best practices

• Tool dependent 

settings / config files

Step by step...
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LET’S OPEN UP THE DISCUSSION!

If you are interested to join the activity:

→ See Accellera announcement https://forums.accellera.org/

→ Contact us directly per mail

... until end of 2019!

tim.kraus@de.bosch.com 

ingo.feldner@de.bosch.com 

https://forums.accellera.org/

