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HLS Simulation Flows

• Key benefit: faster time 
to bug free RTL.

1. Fast, re-use HL TB, finds 
most functional bugs.

2. Medium Effort, speed

3. Slowest, most effort.  
Triage is harder.
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C++/SystemC Assertion

• Used to test for 
conditions which must 
“always” be true

• Triggers program 
termination on failure.

• Should not contain side-
effects.

• Helps specify intent

• SystemC has sc_assert()
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enum opcode_t {ADD, SUB, MULT, DI
V};
void alu(opcode_t op, uint8_t a,
uint8_t b, uint8_t& c) {
switch (op) {
case ADD: c = a + b; break;
case SUB: c = a - b; break;
case MULT: c = a * b; break;
case DIV: assert(b != 0);

c = a / b; break;
default: assert("Bad Opcode"

&& 0); break;
}

}



SystemVerilog Assertions

• Immediate – Like C++  assert 

– assert (B != 0) else $error(“Division by 0 attempted”);

• Concurrent – specifies a “property”
– assert property (! (rdMem && wrMem));  // signals are mutex

– May be expressed using temporal logic

– “Grant will be asserted no later than 1 cycle after Req asserted”

– Assert property (@(posedge Clk) Req |-> ##[1:2] Grant);

• May be validated dynamically (by simulation) or statically (by 
formal tools

• Many users find writing temporal logic hard and re-use libraries of 
existing assertions.  [See Accellera OVL]
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RTL IP flows

• HLS tools support mapping 
a function to a pre-existing 
piece of RTL.

• Intended to reuse hand-
optimized bit of Vlog code.

• Details depend on your HLS 
tool.

• User writes 2 versions of div
– C++ and Vlog

– User guarantees they are 
same
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void DUT::proc() {
wait();  // ^^ reset action
while (true) {
while (stall.read()) wait();
bool vld = v_in.read();
if (vld) { 
// call the vlog module
DT a =a_i.read(), b_i.read();
DT c = div(a, b);
}
v_out.write(vld);
c_out.write(c);
wait();

}
}



Assert as RTL IP [Desired] *

• Treat each assertion in SV 
library as an RTL IP.

• Let IP flow instantiate the 
assertion in gRTL.

• * This doesn’t quite work
a_NE_b is void type

© Accellera Systems Initiative 7

void DUT::proc() {
wait();  // ^^ reset action
while (true) {
while (stall.read()) wait();
bool vld = v_in.read();
if (vld) { 
DT a =a_i.read(), b_i.read();
a_NE_b(b, DT(0));
DT c = (a / b);

}
v_out.write(vld);c_out.write(c);
wait();
}
}



Assert as RTL IP [Desired] *
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module a_ne_b (clk, rst, valid_in,   stall, a, b);
input clk, rst, valid_in, stall;    // … becomes a module with an 
input [31:0] a, b;                  // instance of an SV assert from
always @(posedge clk) begin         // our SV assertion library
if (valid_in && !rst) begin
`ASSERTC_MUST(a_ne_b, a != b,rst,
`ERR_MSG("a_ne_b fails: a = %x, b = %x", a, b));
end

end
endmodule // a_ne_b

// SystemC code
void a_NE_b (DT a, DT b) {   
#ifndef HLS

sc_assert( a != b);  //<<< Assert in SystemC code…
#else 
// HLS vendor-specific code
// maps formals to RTL ports
#endif

} becomes



…but assertions have no side effects 

• As far as HLS is concerned, 
a_NE_b can be optimized 
away (no write to a signal or 
port)

• HACK Write to extra signal 
– Make assertion return bool

– Gang all the extra return 
values with XORs.

– Has a real (but small) 
hardware cost
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void DUT::proc() {
bool p = false;  // preserve asserts
pp.write(p); // with pseudo port
wait();  // ^^ reset action
while (true) {
while (stall.read()) wait();
bool vld = v_in.read();
if (vld) { 
DT a =a_i.read(), b_i.read();
p ^= a_NE_b(b, DT(0));
DT c = (a / b);

}
v_out.write(vld);c_out.write(c);
pp.write(p);
wait();
}
}



RTL IP flows [preserved]
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module a_ne_b (clk, rst, valid_in, stall, a, b, a_ne_b_out);
input clk, rst, valid_in, stall;
input [31:0] a, b;
output       a_ne_b_out;
always @(posedge clk) begin

if (!rst && !stall && valid_in) begin
`ASSERTC_MUST(a_ne_b, a != b, rst, 
`ERR_MSG("a_ne_b fails: a = %x, b = %x", a, b));

end
end
assign  a_ne_b_out = 1’b1; //<<< ‘1’ will feed XOR chain

endmodule // a_ne_b

bool a_NE_b (DT a, DT b) {
#ifndef HLS

sc_assert( a != b); //<<< Assert in SystemC code…
return 1;           //<<< ‘1’ will feed XOR chain

#else 
// HLS vendor-specific code maps formals to RTL ports
#endif

}
becomes



In a Design

• Created a small assertion library (C++, Vlog) for a small bus 
interface block

• Assertions trigger in both SystemC and Verilog simulation.  

• Triage in mixed-language simulation is significantly eased. 

• For our designs, the extra hardware (the XOR chain) is 
almost too small to measure.

• The coding changes in the systemc code is moderate.   
– XOR chain and preserved signal.

• Somewhat labor prone 
– Library must be maintained and validated

– Details (but not approach) is vendor specific.
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Conclusion

• Assertions are useful both for validation and triage

• But – implementing today involves cost and hacks.

• We think the implementation should move to the 
vendor HLS tools.

– They can automate the dead code issue.

– They can directly translate the assertion to sv

• Future open question:

– Can HLS tools use assertions to improve design quality. 
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