
Assertion Checking in SystemC
HLS Flows

Bob Condon

Presented by Rauf Salimi

© Accellera Systems Initiative

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by Intel Corporation to use this
material in developing all future revisions and editions of
the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based
on this standard.

HLS Simulation Flows

• Key benefit: faster time
to bug free RTL.

1. Fast, re-use HL TB, finds
most functional bugs.

2. Medium Effort, speed

3. Slowest, most effort.
Triage is harder.

© Accellera Systems Initiative 3

HLS Simulation Flows

RTL ValidationHLSFunctional Validation

SC-Design

HLS

RTL

Functional TB
(C++, C,)

C++/SC
simulation

SVlog TB

Mixed Sim
(SV TB, SC

Design)

RTL
Simulation

Text

C++/SystemC Assertion

• Used to test for
conditions which must
“always” be true

• Triggers program
termination on failure.

• Should not contain side-
effects.

• Helps specify intent

• SystemC has sc_assert()

© Accellera Systems Initiative 4

enum opcode_t {ADD, SUB, MULT, DI
V};
void alu(opcode_t op, uint8_t a,
uint8_t b, uint8_t& c) {
switch (op) {
case ADD: c = a + b; break;
case SUB: c = a - b; break;
case MULT: c = a * b; break;
case DIV: assert(b != 0);

c = a / b; break;
default: assert("Bad Opcode"

&& 0); break;
}

}

SystemVerilog Assertions

• Immediate – Like C++ assert

– assert (B != 0) else $error(“Division by 0 attempted”);

• Concurrent – specifies a “property”
– assert property (! (rdMem && wrMem)); // signals are mutex

– May be expressed using temporal logic

– “Grant will be asserted no later than 1 cycle after Req asserted”

– Assert property (@(posedge Clk) Req |-> ##[1:2] Grant);

• May be validated dynamically (by simulation) or statically (by
formal tools

• Many users find writing temporal logic hard and re-use libraries of
existing assertions. [See Accellera OVL]

© Accellera Systems Initiative 5

RTL IP flows

• HLS tools support mapping
a function to a pre-existing
piece of RTL.

• Intended to reuse hand-
optimized bit of Vlog code.

• Details depend on your HLS
tool.

• User writes 2 versions of div
– C++ and Vlog

– User guarantees they are
same

© Accellera Systems Initiative 6

void DUT::proc() {
wait(); // ^^ reset action
while (true) {
while (stall.read()) wait();
bool vld = v_in.read();
if (vld) {
// call the vlog module
DT a =a_i.read(), b_i.read();
DT c = div(a, b);
}
v_out.write(vld);
c_out.write(c);
wait();

}
}

Assert as RTL IP [Desired] *

• Treat each assertion in SV
library as an RTL IP.

• Let IP flow instantiate the
assertion in gRTL.

• * This doesn’t quite work
a_NE_b is void type

© Accellera Systems Initiative 7

void DUT::proc() {
wait(); // ^^ reset action
while (true) {
while (stall.read()) wait();
bool vld = v_in.read();
if (vld) {
DT a =a_i.read(), b_i.read();
a_NE_b(b, DT(0));
DT c = (a / b);

}
v_out.write(vld);c_out.write(c);
wait();
}
}

Assert as RTL IP [Desired] *

© Accellera Systems Initiative
8

module a_ne_b (clk, rst, valid_in, stall, a, b);
input clk, rst, valid_in, stall; // … becomes a module with an
input [31:0] a, b; // instance of an SV assert from
always @(posedge clk) begin // our SV assertion library
if (valid_in && !rst) begin
`ASSERTC_MUST(a_ne_b, a != b,rst,
`ERR_MSG("a_ne_b fails: a = %x, b = %x", a, b));
end

end
endmodule // a_ne_b

// SystemC code
void a_NE_b (DT a, DT b) {
#ifndef HLS

sc_assert(a != b); //<<< Assert in SystemC code…
#else
// HLS vendor-specific code
// maps formals to RTL ports
#endif

} becomes

…but assertions have no side effects

• As far as HLS is concerned,
a_NE_b can be optimized
away (no write to a signal or
port)

• HACK Write to extra signal
– Make assertion return bool

– Gang all the extra return
values with XORs.

– Has a real (but small)
hardware cost

© Accellera Systems Initiative 9

void DUT::proc() {
bool p = false; // preserve asserts
pp.write(p); // with pseudo port
wait(); // ^^ reset action
while (true) {
while (stall.read()) wait();
bool vld = v_in.read();
if (vld) {
DT a =a_i.read(), b_i.read();
p ^= a_NE_b(b, DT(0));
DT c = (a / b);

}
v_out.write(vld);c_out.write(c);
pp.write(p);
wait();
}
}

RTL IP flows [preserved]

© Accellera Systems Initiative 10

module a_ne_b (clk, rst, valid_in, stall, a, b, a_ne_b_out);
input clk, rst, valid_in, stall;
input [31:0] a, b;
output a_ne_b_out;
always @(posedge clk) begin

if (!rst && !stall && valid_in) begin
`ASSERTC_MUST(a_ne_b, a != b, rst,
`ERR_MSG("a_ne_b fails: a = %x, b = %x", a, b));

end
end
assign a_ne_b_out = 1’b1; //<<< ‘1’ will feed XOR chain

endmodule // a_ne_b

bool a_NE_b (DT a, DT b) {
#ifndef HLS

sc_assert(a != b); //<<< Assert in SystemC code…
return 1; //<<< ‘1’ will feed XOR chain

#else
// HLS vendor-specific code maps formals to RTL ports
#endif

}
becomes

In a Design

• Created a small assertion library (C++, Vlog) for a small bus
interface block

• Assertions trigger in both SystemC and Verilog simulation.

• Triage in mixed-language simulation is significantly eased.

• For our designs, the extra hardware (the XOR chain) is
almost too small to measure.

• The coding changes in the systemc code is moderate.
– XOR chain and preserved signal.

• Somewhat labor prone
– Library must be maintained and validated

– Details (but not approach) is vendor specific.

© Accellera Systems Initiative 11

Conclusion

• Assertions are useful both for validation and triage

• But – implementing today involves cost and hacks.

• We think the implementation should move to the
vendor HLS tools.

– They can automate the dead code issue.

– They can directly translate the assertion to sv

• Future open question:

– Can HLS tools use assertions to improve design quality.

© Accellera Systems Initiative 12

