
Multi-core debugger integration
in OSCI SystemC

Peter de Jager

Intel Corporation

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Intel Corporation to use this material in developing all future
revisions and editions of the resulting draft and approved Accellera
Systems Initiative SystemC standard, and in derivative works based on
the standard.

© Accellera Systems Initiative 2

Outline

• Background & Motivation

• High-level requirements

• Generic design proposal

• Synchronization

• Synchronization - Implementation 1

• Synchronization - Implementation 2

• Next steps

• Discussion

© Accellera Systems Initiative 3

Background & Motivation

• About the author:
– Located @ Intel Eindhoven, Silicon Hive team

– Group develops tools (HiveLogic) to create cores and systems

– Technology has been used in a variety of products for a variety of application
domains, including :
• video coding

• video post-processing

• imaging

• communications

© Accellera Systems Initiative 4

Silicon Hive technology: Four key elements

© Accellera Systems Initiative 5

Design-time configurable

processor & system

architecture templates

supported by elaborate

libraries of hand-optimized,

fully parameterized

processor & peripheral

building blocks

A unique methodology for

fast & vast design space

exploration at processor and

system-level, supported by

highly abstract design entry

through high-level

languages

A fully automated flow and

corresponding tools for

(multi-) processor &

system hardware

generation

A fully retargetable

programming tool suite

based on ANSI-C source

entry

Slide courtesy of Jeroen Leijten, Sr. Principal Engineer, Intel Corporation

Background & Motivation
• Products that use our technology are

– Multi-core
– Heterogeneous
– Application-specific

• System-Simulation technology used to be proprietary
– Supported application-software debug-capabilities

• Moved towards SystemC/TLM
– Previous debug-solution not applicable anymore

• A generic mechanism to support application-software debugging is
not standard available in OSCI SystemC

© Accellera Systems Initiative 6

High-level requirements
Usability (functional)
• Debugger should be able to connect remotely
• Attach/detach to specific core in simulation

– Attach: core/simulation stops
– Detach: core/simulation continues

• Support debug-commands (like standard debuggers)
– step/continue/breakpoints/watchpoints/registers/memories/..
– Support for user-break to stop current step/continue command

• Debug multiple cores simultaneously
– via one multi-core debugger and/or multiple independent debuggers

© Accellera Systems Initiative 7

High-level requirements

Reliability (functional)

• Simulation should behave same when debugger is attached

Applicability (functional)

• Solution should not depend on debug-hw being present

Maintainability (scalable)

• Debugger & connection to simulation must be core-independent

© Accellera Systems Initiative 8

Generic design proposal

• Create common infrastructure for debug-servers in system-simulation

• Automatically instantiate debug session-server for each core

• Provide a consistent abstraction layer (DebugAPI) to processor models
– Introspection

– Run-control

• Propagate architecture information from
processor model → debugserver→ debugger
– Use a generic retargetable debugger

– Use generic DebugServer

© Accellera Systems Initiative 9

Generic design proposal

© Accellera Systems Initiative 10

simulation

GDB specific

• To interactively debug firmware on a
(custom) processor (new for GDB) in a
system-simulation required to retarget
GDB

– Custom GDB-Server required

• Normally GDB needs to be build
including the architecture information

GDB-server RSP

protocol

GDB
Disassembler

Architecture
Model

GDB-Server
(processor-specific)

Compiler

IDE GDB-MI

protocol

Executable with
debug-information

processor

Generic design proposal

• GDB by default supports lots of different cores
– Architecture information part of source, compiled

• Modifications to GDB required
– Add runtime retargetability

• GDB ‘remote target’ command used to connect to simulation
– On connection, GDB receives details of the processor connected to

• Register-files

• Memories

• sizes of c-types

© Accellera Systems Initiative 11

simulation

Generic design proposal

© Accellera Systems Initiative 12

• Retargetable GDB

– Receives Architecture model
upon connecting

• Generic GDBServer using standard
DebugAPI to processor

GDBserver RSP

protocol

Retargetable
GDB

Disassembler

Architecture
Model

GDBServer
session

Compiler

IDE GDB-MI

protocol

Executable with
DWARF

processor
API

Synchronization

• SystemC simulation and Debug support run in separate threads

• Debugger issues synchronous & asynchronous commands

• Synchronous (simulation is stopped)

– Inspection: read/write memories/registers

– Run-control: set breakpoints/watchpoints, step, run_until

• Asynchronous (simulation is running)

– Attach to simulation

– User-interrupt

➔ thread-safe event (using async_request_update()) required

© Accellera Systems Initiative 13

Simulation

Session threads Debug thread

Synchronization

© Accellera Systems Initiative 14

SystemC thread

DEBUGGER
(gdb)

Debug
Service

SystemC Processor
ISS Model

IPC

Debug
Instrumentation

Additional code to implement

DebugAPI

Process adaptation for

breakpoints etc.

notification Inspection/

Run-control

rsp
Debugger

Session

DEBUG
Adaptor

Debugger
Session
Debug
Session

DEBUG
Adaptor

DebugAPI

Debug
Adaptor

Synchronization

Code for sc_main (replacement for sc_start())
if (allowDebug) {

DebugService::getInstance().createMonitors(dbg_port); // create the sessions

std::thread debugService(debug_task, &DebugService::getInstance().io_service);

debugService.detach(); // Do not block execution.

}

std::thread systemSimulation(simulation_task, global_quantum_value); // calls sc_start()

systemSimulation.join(); // wait until simulation finishes

if (allowDebug) {

debugService::getInstance().io_service.stop(); // cleanup resources

}

© Accellera Systems Initiative 15

Boost asio

TLM global quantum

Synchronization: implementation 1

• First implementation

– Control each core separately

– Only specific core under debug is stopped (e.g. when breakpoint hit),
remaining parts of system continue simulation

– Behaves like hw without cross-trigger/cross-resume functionality

© Accellera Systems Initiative 16

Synchronization: implementation 1

© Accellera Systems Initiative 17

User (GDB) session_1 adaptor_1

message(encoded
parameter(s))

return(encoded
 result)

message(parameters)

return(result)

core_1::
debugapi

runCommand(param)

return(runResult)

core_1::
process

core_1::
command
condition

core_1::
result

condition

notify

wait

wait

notify_one

Run/step command sequence

wait

runResult can be

[1..n] stopReasons

C++

condition_variable

ThreadSafe Event,

asynq_request_update

other
sc-processes

N-

quantums

Synchronization: implementation 1

© Accellera Systems Initiative 18

User (GDB) session_1 adaptor_1

message(encoded
 parameter(s))

return(encoded
 result)

message(parameters)

return(result)

core_1::
debugapi

introspection
Command(param)

return(Result)

core_1::
process

Introspection command sequence:
systemC process is not active/systemC

thread is blocked

other
sc-processes

Synchronization: implementation 1

© Accellera Systems Initiative 19

User (GDB) session_1 adaptor_1

message(encoded
parameter(s))

return(encoded
userBreak)

message(parameters)

return(userBreak)

core_1::
debugapi

runCommand(param)

return(userBreak)

core_1::
process

core_1::
command
condition

core_1::
result

condition

notify

wait

wait

notify_one

User-interrupt (^C) command sequence

wait

core_1::
userbreak

^C Changes condition,

breaks execution

loop

C++

condition_variable
ThreadSafe Event,

asynq_request_update

ThreadSafe Event,

asynq_request_update

other
sc-processes

N-quantums

Synchronization: implementation 1

Results:

• Relatively easy to implement

• User feedback: not happy

– When multiple cores/initiators are active, state of system is not preserved

– Issues with reproducibility

– Restart after break difficult/nearly impossible

© Accellera Systems Initiative 20

Synchronization: implementation 2

Added requirement of state-preservation

Initial ‘naive’ solution

• Stop complete SystemC thread on stop of a core (bp-hit, step etc.)

– Lock mutex on stop

– Unlock on continue

© Accellera Systems Initiative 21

Synchronization: implementation 2

© Accellera Systems Initiative 22

User
(GDB)

session_1 adaptor_1

message(encoded
parameter(s))

return(encoded result)

message(parameters)

return(result)

core_1::
debugapi

runCommand(param)

return(runResult)

core_1::
process

core_1::
command
condition

core_1::
result

condition

notify

wait

wait

notify_one

Run/step command sequence

runResult can be

[1..n] stopReasons

C++

condition_variable

ThreadSafe Event,

asynq_request_update

DebugSync

Wrapper around

mutex/cond

break()

continue()

other
sc-processes

N-quantums

Synchronization: implementation 2

Results:

• Also easy to implement

• User feedback: happier but not completely

– State of system is preserved

– Scenarios are reproducible

– Breaks async-requests on other cores:
• Userbreak (^C), attach not possible anymore when 1 core in broken state

© Accellera Systems Initiative 23

Synchronization: implementation 2

© Accellera Systems Initiative 24

User
(GDB)

session_2 adaptor_2

message(encoded
parameter(s))

message(parameters)

core_2::
debugapi

runCommand(param)

core_2::
process

core_2::
command
condition

core_2::
result

condition

notify

wait

wait

User-interrupt (^C) command sequence (2)
C++

condition_variable

ThreadSafe Event,

asynq_request_update

DebugSync

Wrapper around

mutex/cond

continue()

other
core

N-quantums

break()^C

core_2::
userbreak

Changes condition,

breaks execution

loop: NOT possible

ThreadSafe Event,

asynq_request_update

Cannot send reply

to GDB, since

process is not

running

GDB hangs,

since it does

not get

 a reply

Next steps

• Move control on SystemC thread stop/continue into global
DebugService

• Keep administration on corestates & debuggers

– Intercept userbreak when SystemC-thread is already stopped

– Continue only when all cores in ‘broken’-state have received continue-command

© Accellera Systems Initiative 25

Discussion

• Is this approach worthwhile to standardize, e.g. as part of CCI?

– https://www.accellera.org/activities/working-groups/systemc-cci

– The SystemC Configuration, Control and Inspection WG is responsible for
developing standards that allow tools to interact with models in order to perform
activities such as setup, debug and analysis

• Further questions?

© Accellera Systems Initiative 26

https://www.accellera.org/activities/working-groups/systemc-cci

