
Towards a Standardized Multi Language
Verification Framework

First Prototype and Demonstration

MLV Working Group (Skeleton Subgroup)

Martin Barnasconi (NXP)
Alex Chudnovsky (Cadence)

Faris Khundakjie (Intel)
Bryan Sniderman (AMD)
Warren Stapleton (AMD)

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by AMD, Cadence, Intel, NXP to use this material in developing
all future revisions and editions of the resulting draft and approved
Accellera Systems Initiative SystemC standard, and in derivative works
based on the standard.

© Accellera Systems Initiative 2

MLVWG – Agenda
• Introduction (Warren Stapleton @ AMD – MLVWG Chair)

– Problem Statement
– Example Use Cases
– High Level Architectural Requirements
– Architecture
– Example Use case
– MLV API Standard
– Sample API document
– Software Architecture

• MLV Demo (Faris Khundakjie @ Intel – MLVWG – Co-chair)
– Live demonstration

• SystemC Requirements (Martin Barnasconi @ NXP - MLVWG & Accellera TC Chair)
– Learnings
– Summary

© Accellera Systems Initiative 3

MLVWG – Introduction

The mission of the MLVWG is to create a standard and functional reference for
interoperability of multi-language verification environments and components.

• The MLVWG have reviewed requirements and are developing an open source proof-
of-concept library for creating a standards-based approach for combining
verification environments developed in different languages/frameworks.

• In addition, the group will look at ways to enable the introduction of UVM (Universal
Verification Methodology) concepts in other environments and languages that come
from legacy projects or developed with frameworks other than System Verilog or
System C for beneficial reasons.

• Chair: Warren Stapleton (AMD)

• Vice Chair: Faris Khundakjie (Intel)

© Accellera Systems Initiative 4

MLVWG – Problem Statement

• Verification engineers encounter multi-language (ML) integration problems
on a regular basis.

• The ML integration problem is not limited to System VerilogSystemC but
can include models and stimulus in other languages such as VHDL, Matlab, e,
C/C++, and interpreted languages.

• Many users share the same use cases and most (re)invest redundant efforts
with non-standard internal or vendor-specific solutions.

• The problem grows when mixing technologies from different vendors for their
unique benefits.

© Accellera Systems Initiative 5

MLVWG – Example Use Cases

• Verification IP reuse

– Combine VIP that has been written in different frameworks/languages into a coherent DV
environment

• Software based stimulus

– CPU/Embedded controller with own instruction set where UVM style sequences do not make
sense.

• Reuse for simulation acceleration

– SystemC reference and functional model reuse in hardware accelerated environments where a
SystemVerilog testbench may not be present.

• Legacy code reuse

– Seamless integration of legacy testbench code and utilities written in different languages.

© Accellera Systems Initiative 6

MLVWG – Requirements Goals

• Goals

– Standardize interoperability between multiple different verification frameworks through

• communication between the frameworks

• coordination with phasing/synchronization primitives

• and making common methodology facilities available across the entire system.

– Simplify the integration of external VIP

– Deliver debug state and access methods for data that flows through the system.

– Should also encompass emulation and hardware assisted verification environments.

– Enable multiple implementations based on a standard.

• Tenants

– Follow UVM principals and support a superset of the UVM functionality.

© Accellera Systems Initiative 7

MLVWG Requirement Areas
Section Description

System Overall system level/architectural

Startup Getting the ML system initialized

Shutdown Cleaning up

Synchronization Timing and event level coordination

Phasing User level phasing

Communications Sending data between frameworks

Control and Status Controlling the system and determining what is going on

Messaging Routing/processing user level messages and reporting

Debug Figuring out what is going on across the ML system

Register Management Access to Register meta-data from different frameworks

Compliance Deliverables of the ML team and testing requirements

© Accellera Systems Initiative 8

Guiding Principles

• Facilitate the creation of a scalable, modular and layered architecture
– Following “Service-oriented framework” concepts

• MLV introduces adaptors that bridge frameworks that have UVM(-like)
capabilities to the overall system
– Phasing, configuration and communication offered as services.

– Available services are selected using a resolution process.

• Decouple API from Implementation
– Standardizing API (Documentation and header files)

– Providing reference implementation.

– Facilitate creation of one or more reference implementations.

© Accellera Systems Initiative 9

Framework 2

MLV Architecture

© Accellera Systems Initiative 10

Framework 1
Framework 2

Top Top

Framework 2
Adapter

Services
Services

Service Registry

Sy
n

ch
ro

n
iz

at
io

n
Control

Interface R
ep

o
rt

in
g

C
o

m
m

u
n

ic
at

io
n

C
o

n
fi

gu
ra

ti
o

n

R
es

o
u

rc
es

P
h

as
in

g

R
eg

is
te

rs

In
tr

o
sp

ec
ti

o
n

H
ie

ra
rc

h
y

D
eb

u
g

Services

UVM-SV
UVC

MLV Use Case: VIP Reuse

© Accellera Systems Initiative 11

Mon

Test

UVM-SV
Adapter

Services

Service Registry

Sy
n

ch
ro

n
iz

at
io

n
Control

Interface R
ep

o
rt

in
g

C
o

m
m

u
n

ic
at

io
n

C
o

n
fi

gu
ra

ti
o

n

R
es

o
u

rc
es

P
h

as
in

g

R
eg

is
te

rs

In
tr

o
sp

ec
ti

o
n

H
ie

ra
rc

h
y

D
eb

u
g

Services

UVM-SystemC

Scoreboard

UVM-SystemC
Adapter

Mon

Drv Seq

Software Architecture – layers

Application (user) code

MLV adapter(s)

MLV API

MLV

implementation

(Multi-language) verification

environment developed by end-user

Multi-language framework adapters

developed by EDA and/or Framework

provider(s)

Standardized abstract interface

definitions (“Accellera MLVWG standard”)

Implementation of the interfaces for services

such as phasing, communication, etc.

Framework(s)

(e.g. UVM-SV,

UVM-SC, …)

* MLV Reference Implementation

© Accellera Systems Initiative 12

Application (user) code

MLV adapter(s)

MLV

Implementation

Framework(s)

(e.g. UVM-SV,

UVM-SC, …)

Software Architecture – layers services

Comm

(TLM)
Phasing MLV API…

Initial focus of MLV API definition

• Lifecycle (Startup, Shutdown)

• Hierarchy

• Phasing

© Accellera Systems Initiative 13

Application (user) code

MLV

adapter(s)

MLV

impl.

Framework(s)

(e.g. UVM-SV,

UVM-SC, …)

Software Architecture - import/export

MLV API defines import/export

interfaces (from adapter point-of-view)

Import interfaces

• Use the methods defined in the

interface

• The method functionality

(implementation) is owned by an

MLV implementation

Export interfaces

• Provide an implementation

of the methods defined in an

interface

• The method functionality is owned

by the MLV adapter

uses

imple-

ments

imple-

ments

uses

export if export if export if import if

© Accellera Systems Initiative 14

API Naming Convention

• Introduced naming conventions to reflect ownership and direction of
communication based on a popular C++ style guide.

• Pattern:
Mlv<Category><Actor-role><Direction><Type>
– Category: one of phasing, communication (TLM), configuration, etc.

– Actor-role: Indicate role of the actor, e.g. Participant/Controller

– Direction: Provide interface (Export) or apply interface (Import)

– Type: Abstract interface type (If)

• Example:
– MlvPhaseParticipantExportIf

© Accellera Systems Initiative 15

Communication (TLM) API (Preliminary)

• MLV TLM interface definitions
– TLM interconnect
– TLM analysis ports
– TLM1 (put/get semantics)
– TLM2 (transport API)

© Accellera Systems Initiative 16

MLV Demo

• Demonstrate basic MLV capabilities

– Lifecycle
• Startup

• Shutdown

– Phasing

• Live demonstration

© Accellera Systems Initiative 17

SystemC multi-language requirements (1)

• Enable instantiation of verification components after elaboration of the
design hierarchy, at the start of simulation

– UVM-SystemVerilog instantiates verification components in the initial block,
so at the start of simulation. Other frameworks should be able to interact with
this structure. E.g. alignment between build and connect phases.

– SystemC should introduce a dedicated phase to enable “late” instantiation of
verification component just before simulation starts.

– Initial proposal in SystemC github ticket #383 Introduce quasi static elaboration
phase (MLVWG request)

© Accellera Systems Initiative 18

https://github.com/OSCI-WG/systemc/issues/383

SystemC multi-language requirements (2)

• Time-synchronization in a multi-language environment requires that
SystemC stops at the specified time

– Problem: sc_start(<time>) causes the SystemC kernel to stop just before the
first delta of the specified <time>, rather than entering it

– Proposal: sc_start(<time>) should stop at the first delta of the specified <time>

– No SystemC github issue/ticket available yet

© Accellera Systems Initiative 19

Other requirements

• Requirements related to UVM-SystemVerilog, UVM-SystemC standards
and implementations:

– The UVM environment shall perform the elaboration of the verification
components by calling dedicated callbacks in the context of SystemC

– Introduce an alternative methods to UVM run_test which decouples the
creation of the verification environment from the actual start of the test

• These methods are the entry point to start multi-language verification scenarios

• Example: elaboration of the verification components uvm_elab (<test>), Start of (ML)
simulation: uvm_start(<time>)

© Accellera Systems Initiative 20

Learnings & Findings

• We are dealing with a complex problem
– Build upon capabilities and limitations of existing verification frameworks and standards

(like UVM) or build something from scratch?

– We learned how to leverage existing developments and technologies and adapt them to
the MLV API / standard (e.g. UVM-ML)

• Practical challenge
– Ownership on the adapter side regarding services that want to be used external to a

framework

– Introducing new capabilities without changing existing user code

– Limited resources and time for API definition and implementation

• Strong commitment and contributions of Intel, AMD, NXP and Cadence
– We can use your help … contact us if you’d like to contribute

© Accellera Systems Initiative 21

Summary
• First API proposals are there

• Presented to SystemC group requirements for standardized extensions

• Have a demonstration using a partially implemented reference

• Next steps
– Work on next area, TLM communication

– Expand demo to include SV

– Include more frameworks

– Document API in language reference manual

• Future
– Look for collaboration opportunities for other language framework adapters

• Join Us!
– How to contribute - Contact the working group chair

• mlwg-chair@lists.accellera.org

© Accellera Systems Initiative 22

mailto:mlwg-chair@lists.accellera.org

BACKUP

Example Use-case
ubus_tb_top

test_read_modify_write

ubus_example_tb0

seq read_modify_write_seq

ubus0

scoreboard0

masters[0]

sequencer

driver monitor

slaves[0]

sequencer

driver monitor
bus_monitor

vif DUT

UVM-SC

UVM-SV

TLM

Reference model

© Accellera Systems Initiative 24

MLVWG – Additional Requirements
• Dependencies (or more appropriately, Independencies)

– Should not necessarily implement the functionality relying on a specific framework
– User-level VIP code is not aware of the solution
– Allow for future and proprietary verification frameworks to interoperate

• Control
– Allow VIP in different frameworks to be controlled from different languages/frameworks
– Provide the ability to forward external commands between frameworks
– Allow for locality controls/filters to optimize messaging between frameworks*

• Access to commonly used facilities, e.g.
– Deliver API to share access to commonly used features like memory managers and

register abstraction layers*
– Deliver visibility and control over when any framework is performing save-restore

(serialization) actions

© Accellera Systems Initiative 25

