
Temporal assertions in SystemC

Mikhail Moiseev, Intel Corporation

Leonid Azarenkov, Intel Corporation

Ilya Klotchkov, Intel Corporation

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Intel Corporation to use this material in developing all future
revisions and editions of the resulting draft and approved Accellera
Systems Initiative SystemC standard, and in derivative works based on
the standard.

© Accellera Systems Initiative 2

Current SystemC assertions and error reporting

• sc_report_handler::report with pre-defined macros
– SC_REPORT_FATAL (const char*, const char*)

– SC_REPORT_ERROR (const char*, const char*)

– SC_REPORT_WARNING (const char*, const char*)

– SC_REPORT_INFO (const char*, const char*)

– sc_assert(bool) which is SC_REPORT_FATAL

• C++ assert(bool)

© Accellera Systems Initiative 3

SystemVerilog assertions (SVA)
• Immediate assertion

– assert(expr)
– assert(expr) else …

• Concurrent assertions
– Run in always block

• assert property (req |-> resp);
• assert property (req |=> resp);
• assert property (req |-> ##1 resp);
• assert property (req |-> ##[1:2] resp);

– Run in module scope with event specified
• assert property (@(posedge clk) req |-> resp);
• assert property (@(negedge clk) req |-> ##[1:2] resp);

• Combining sequences: and, intersect, or, …
• Local variables in property
• System functions: $rose, $fell, $stable, $past, ...

© Accellera Systems Initiative 4

Temporal assertions in SystemC

• Extend existing SystemC assertions with temporal properties
– Look similar to temporal SystemVerilog assertions (SVA)

• Use the assertion
– in SystemC simulation

– to generate equivalent SVA in high level synthesis

• Intended for hardware design, consider SystemC synthesizable subset

© Accellera Systems Initiative 5

Temporal assertion interface

• Temporal assertions placed in
• Module scope

• SCT_ASSERT (LHS, TIME, RHS, EVENT)

• SCT_ASSERT (RHS, EVENT), short form of previous where LHS is true and time is 0

• Thread process function scope
• SCT_ASSERT (LHS, TIME, RHS)

• SCT_ASSERT_LOOP (LHS, TIME, RHS, ITER)

LHS – antecedent assertion expression (pre-condition)

TIME – temporal condition is specific number of cycles or time interval in cycles

RHS – consequent assertion expression, checked to be true if pre-condition was true (post-condition)

EVENT – cycle event

ITER – loop iteration counter variable(s), comma separated in arbitrary order

© Accellera Systems Initiative 6

Temporal assertions in module scope

• Assertions in module scope avoid to clutter design function code
– access module fields: signals, ports, …

– require an event which is clock positive, negative or both edges

© Accellera Systems Initiative 7

// A and B some expressions can be evaluated as bool

SCT_ASSERT(A, SCT_TIME(0), B, clk.neg());

SCT_ASSERT(A, SCT_TIME(1), B, clk.neg());

SCT_ASSERT(A, SCT_TIME(3,1), B, clk);

SCT_ASSERT(A, (2), B, clk);

SCT_ASSERT(A, (4,0), A, clk);

SCT_ASSERT(B, clk.pos());

Temporal assertions in module examples

© Accellera Systems Initiative 8

// A.cpp

static const unsigned T = 3;

static const unsigned N = 4;

sc_clk_in clk{“clk”};

sc_in<bool> req{ "req"};

sc_out<bool> resp{"resp"};

sc_signal<sc_uint<8>> val{"val"};

sc_vector<sc_signal<bool>> enbl{"enbl",N};

...

SCT_ASSERT(req, (1), resp, clk.neg());

SCT_ASSERT(req, (1,2), val.read()== N, clk);

SCT_ASSERT(enbl[0], (3), enbl[1], clk);

SCT_ASSERT(req || !resp, clk.pos());

...

`ifndef SVA_OFF

A10: assert property(@(negedge clk) req |=> resp);

A11: assert property(@(clk) req |-> ##[1:2] val == 4);

A12: assert property(@(clk) enbl[0] |-> ##3, enbl[1]);

A13: assert property(@(posedge clk) 1 |-> req || !resp);

`endif // SVA_OFF

Temporal assertions in function

© Accellera Systems Initiative 9

• Assertions in function scope can access local variables
• Assertions placed in reset section or after it before main loop

– assertions after reset not executed during reset
• Special kind of assertions used inside of loops

– intended for array/vector of modules, signals, ports or others

// A and B some expressions can be evaluated as bool

SCT_ASSERT(A, SCT_TIME(0), B);

SCT_ASSERT(A, SCT_TIME(1), B);

SCT_ASSERT(A, SCT_TIME(3,1), B);

for (int j = 0; j < M; ++j) {

SCT_ASSERT_LOOP(A, SCT_TIME(1), B, j); // A and B expressions depends on j

}

Temporal assertions in function examples

© Accellera Systems Initiative 10

void thread_proc() {

// Reset section

// ...

// Assertions in reset section

SCT_ASSERT(req, SCT_TIME(1), ready);

wait();

// Assertions after reset section

SCT_ASSERT(req, (2,3), resp);

// Main loop

while (true) {

// No assertion in main loop

wait();

}}

always_ff @(posedge clk or negedge nrst) begin

if (~nrst) begin

...

end else begin

...

`ifndef SVA_OFF

// Assertions after reset section

sctAssertLine33:

assert property (req |-> ##[2:3] resp);

`endif // SVA_OFF

end

`ifndef SVA_OFF

// Assertions from reset section

sctAssertLine30:

assert property (req |=> ready);

`endif // SVA_OFF

end

Temporal assertions in loop examples

© Accellera Systems Initiative 11

static const unsigned N = 4;

static const unsigned M = 3;

sc_vector<sc_signal<bool>> e{"e", N};

sc_vector<sc_vector<sc_signal<bool>>>

a{"a", N}; // N x M

...

void thread_proc() {

for (int i = 0; i < N; ++i) {

SCT_ASSERT_LOOP(e[i], (1), !e[i], i);

for (int j = 0; j < M; ++j) {

SCT_ASSERT_LOOP(a[i][j], (2),

a[i][M-j-1], i, j);

}}

wait();

...

}}

always_ff @(posedge clk or negedge nrst) begin

...

`ifndef SVA_OFF

for (integer i = 0; i < 4; ++i) begin

sctAssertLine70:

assert property (e[i] |=> !e[i]);

end

for (integer i = 0; i < 4; ++i) begin

for (integer j = 0; j < 3; ++j) begin

sctAssertLine72:

assert property (a[i][j] |-> ##2

a[i][3-j-1]);

end

end

`endif // SVA_OFF

end

Temporal assertions in an industrial module

// Check no read burst interleaving by write request

SCT_ASSERT(this->core_req && !this->core_req_oper && burst_ractive && !this->burst_rlast,

SCT_TIME(1), !this->core_req || !this->core_req_oper,

this->core_clk.pos());

// Port ready cannot be de-asserted w/o request

SCT_ASSERT(resetn && this->core_req && (!arvalid || !this->clocks_match) && arready,

SCT_TIME(1), !resetn || arready, this->core_clk.pos());

// Port valid cannot be de-asserted w/o response taken

SCT_ASSERT(resetn && this->core_req && (!rready || !this->clocks_match) && rvalid,

SCT_TIME(1), !resetn || rvalid, this->core_clk.pos());

// Port valid cannot be de-asserted w/o request

SCT_ASSERT(resetn && this->core_req && (!arready || !this->clocks_match) && arvalid,

SCT_TIME(1), !resetn || arvalid, this->core_clk.pos());

© Accellera Systems Initiative 12

Implementation details

• The assertions are implemented with SCT_ASSERT and SCT_ASSERT _LOOP macros

• In SystemC simulation
– Dynamic allocation of a sct_property_expr class which captures LHS and RHS as lambdas. This

class operator() evaluates lambdas and stores pre- and post-condition traces in specified time
interval, checks post-condition if pre-condition was true and reports error in case of violation

– Create spawned method process sensitive to EVENT or current thread process event, which runs
sct_property_expr()

– Registration of the sct_property_expr instance in a static map with hash calculated for assertion
string, process name and loop iteration(s). That ensures one sct_property_expr instance for an
assertion in each module instance and loop iteration

• Implemented in C++11

© Accellera Systems Initiative 13

Translation to SVA in HLS mode

• Translation to SVA if __SC_TOOL__ is defined
– Provide code in form easy to parse by an HLS tool

• SCT_ASSERT in function replaced with sct_assert_in_proc_func() function call

• SCT_ASSERT in module scope replaced with sct_property_mod type variable
declaration
– The variable name constructed with line number where SCT_ASSERT placed

© Accellera Systems Initiative 14

template<class T1, class T2>

void sct_assert_in_proc_func(bool lhs, bool rhs, const char* name, T1 lo, T2 hi){}

struct sct_property_mod {

template<class T1, class T2>

explicit sct_property_mod(bool lhs, bool rhs, sc_event_finder& event,

const char* name, T1 lo, T2 hi) {} ... }

Evaluation results: artificial examples

© Accellera Systems Initiative 15

Design Number of
processes

Assertions SystemC simulation
time increase

Summator 2 One assertion w/o pre-condition,
single time

10%

One assertion with pre-condition,
single time

12%

One assertion with pre-condition,
time interval (1,3)*

13%

One assertion with pre-condition,
time interval (10,30)*

15%

FIFO 5 One assertion checks FIFO is not
empty after push

4%

Four assertions check main FIFO
properties

17%

* time interval in number of cycles

Evaluation results: industrial designs

© Accellera Systems Initiative 16

Design Number of
processes

Number of assertions SystemC
simulation time

increase

Verilog
simulation time

increase

A 71 19 11% 15%

B 68 21 16% 15%

C 101 22 5% 5%

D 109 41 14% 11%

E 212 38 4% 6%

Intel Compiler for SystemC

• All the code examples and SVA generated with Intel® Compiler for SystemC* (ICSC)

• ICSC translates cycle-accurate SystemC code to synthesizable SystemVerilog

– SystemC synthesizable standard full support

– Arbitrary C++ at elaboration phase, including module constructors

– C++11/14/17 support

– Human-readable generated Verilog code

– CMake based project, no pragmas and other code pollution

– Fast translation procedure, seconds to a few minutes

• ICSC open source tool, available under Apache 2.0 license

– https://github.com/intel/systemc-compiler

© Accellera Systems Initiative 17

https://github.com/intel/systemc-compiler

Temporal assertion sources

• Assertion implementation available

– https://github.com/intel/systemc-compiler in components/common
– sct_assert.h – macros definition

– sct_property.h/sct_property.cpp – sct_property_expr and sct_property_storage definition

– sct_assert.patch – trivial patch for SystemC to get current process sensitivity

© Accellera Systems Initiative 18

https://github.com/intel/systemc-compiler
https://github.com/intel/systemc-compiler/components/common

Conclusion

• We propose
– Evaluate and improve the temporal assertions to finalize interface and

implementation

– Add the assertions in SystemC distribution and update IEEE1666

– Add immediate and temporal assertions into Synthesizable subset standard

© Accellera Systems Initiative 19

