
Matchlib: A New Open-source Library to
Enable Efficient Use of High Level Synthesis

Stuart Swan, Platform Architect,

Mentor, A Siemens Business

stuart_swan@mentor.com

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Mentor, A Siemens Business to use this material in
developing all future revisions and editions of the resulting draft and
approved Accellera Systems Initiative SystemC standard, and in
derivative works based on the standard.

© Accellera Systems Initiative 2

What is NVIDIA MatchLib?

• Good 20 minute intro video here:
– https://www.youtube.com/watch?v=n8_G-CaSSPU

3© Accellera Systems Initiative

https://www.youtube.com/watch?v=n8_G-CaSSPU

Key Parts of MatchLib
• “Connections”

– Synthesizeable Message Passing Framework

– SystemC/C++ used to accurately model concurrent IO that synthesized HW will have

– Automatic stall injection enables interconnect to be stress tested in SystemC

– Supports message latency and capacity back-annotation into pre-HLS model

• Parameterized AXI4 Fabric Components
– Router/Splitter

– Arbiter

– AXI4 <-> AXI4Lite

– Automatic burst segmentation and last bit generation

• Parameterized Banked Memories, Crossbar, Reorder Buffer, Cache

• Parameterized NOC components

4© Accellera Systems Initiative

MatchLib SystemC Model Characteristics
• Small

– Typically 1/10 or less than the size of comparable RTL models

• Fast
– Simulates ~30 times faster than RTL models in timing accurate mode

– Simulates ~300 times faster than RTL models in blocking TLM mode (via compile time flag)

• Accurate
– Not exactly RTL cycle accurate, but pretty close

– Concurrent transactions in HW are modeled very accurately

• Fully automated path to placed gates via SystemC HLS

• Enables SW/FW models to be integrated via C++ host-code or CPU models

• Enables single-source model for HW and FW for full flow

5© Accellera Systems Initiative

MatchLib Results using HLS

6© Accellera Systems Initiative

Complexity/Risk in Modern Designs has Shifted…

• As an example, performance of ML / Vision chips is often in terms of trillions of
MACs per second

• But, design and verification of MACs is not the hard part

• Hard part is often managing the movement of data in the chip across all
scenarios

• Today’s HW designs often process huge sets of data, with large intermediate
results.
– Machine Learning, Computer Vision, 5G Wireless

• The design of the memory/interconnect architecture and the management of
data movement in the system often has more impact on power/performance
than the design of the computation units themselves.

7© Accellera Systems Initiative

MatchLib + SystemC HLS Addresses Complexity / Risk
in Modern Designs

◼ Evaluating and verifying memory/interconnect architecture at RTL level is often not
feasible:
▪ Too late in design cycle.
▪ Too much work to evaluate multiple candidate architectures.

◼ The most difficult/costly HW (& HW/SW) problems are found during system
integration.
▪ If integration first occurs in RTL, it is very late and problems are very costly.
▪ MatchLib + SystemC HLS lets integration occur early when fixing problems is much cheaper.

8© Accellera Systems Initiative

Simple Example: AXI4 DMA using MatchLib

clk
rst

r_slave0

dma_done

w_slave0 w_master0

r_master0

Control Regs

clk
rst

r_slave0

w_slave0

clk
rst

w_master0

r_master0

dma_done

DMACPU Stimulus RAM

= top level of design

The design to be
synthesized with

HLS is a DMA

The CPU Stimulus
programs DMA
control registers

The DMA reads
and writes to the

RAM

9© Accellera Systems Initiative

The DMA performs a memory copy using AXI4 bursts

Entire AXI4 DMA C++ is 170 lines

RTL after HLS is 6000 lines

The only clock/wait is for reset state

This IO is in parallel

This IO is in parallel

Main compute loop gets pipelined in HLS

10© Accellera Systems Initiative

AXI4 DMA Waveforms Before HLS (SystemC simulation)

Automatic AXI4 last bit generation

Automatic AXI4 burst address segmentation

Read and write burst streams are concurrent.

Read/write bus utilization is 100%

11© Accellera Systems Initiative

AXI4 DMA Waveforms After HLS (Verilog Sim)

RTL waveforms are almost same as SystemC waveforms. Throughput is the same.

12© Accellera Systems Initiative

Larger Example: AXI4 Bus Fabric using MatchLib

AXI4 Router/

Splitter

AXI4 Router/

Splitter

AXI4

Arbiter

AXI4

Arbiter
DMA0

DMA1
AXI4 Router/

Splitter

AXI4 Fabric

RAM0

RAM1

CPU

Yellow boxes are MatchLib

Components

Address Map

0x00000

0x7FFFF

0x80000

0x8FFFF

= top level of design

Top level of design.

Two DMA instances.

Two RAM instances.

13© Accellera Systems Initiative

AXI4 Bus Fabric using MatchLib – Test #0

AXI4 Router/

Splitter

AXI4 Router/

Splitter

AXI4

Arbiter

AXI4

Arbiter
DMA0

DMA1
AXI4 Router/

Splitter

AXI4 Fabric

RAM0

RAM1

CPU

Test #0: Concurrently,

DMA0 reads/writes 320 beats to RAM0

DMA1 reads/writes 320 beats to RAM1

RAM0 and RAM1

each have one read

and one write port

14© Accellera Systems Initiative

AXI4 Bus Fabric Test #0 simulation logs

BEFORE HLS (SystemC simulation)

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 0

44 ns top.ram0 ram read addr: 000000000 len: 0ff

44 ns top.ram0 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram read addr: 000000000 len: 0ff

304 ns top.ram0 ram read addr: 000000800 len: 03f

309 ns top.ram1 ram read addr: 000000800 len: 03f

311 ns top.ram0 ram write addr: 000002800 len: 03f

316 ns top.ram1 ram write addr: 000002800 len: 03f

385 ns top dma_done detected. 1 1

385 ns top start_time: 46 ns end_time: 385 ns

385 ns top axi beats (dec): 320

385 ns top elapsed time: 339 ns

385 ns top beat rate: 1059 ps

385 ns top clock period: 1 ns

425 ns top finished checking memory contents

AFTER HLS (Verilog RTL simulation)

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 0

55 ns top/ram0 ram write addr: 000002000 len: 0ff

60 ns top/ram1 ram write addr: 000002000 len: 0ff

68 ns top/ram0 ram read addr: 000000000 len: 0ff

70 ns top/ram1 ram read addr: 000000000 len: 0ff

340 ns top/ram0 ram write addr: 000002800 len: 03f

342 ns top/ram1 ram write addr: 000002800 len: 03f

343 ns top/ram0 ram read addr: 000000800 len: 03f

345 ns top/ram1 ram read addr: 000000800 len: 03f

414 ns top dma_done detected. 1 1

414 ns top start_time: 55 ns end_time: 414 ns

414 ns top axi beats (dec): 320

414 ns top elapsed time: 359 ns

414 ns top beat rate: 1122 ps

414 ns top clock period: 1 ns

454 ns top finished checking memory contents

Before and after HLS we get nearly one beat per clock cycle

15© Accellera Systems Initiative

AXI4 Fabric Waveforms Before HLS–Test #0 (SystemC)

Master0
Read Data

Master1
Read Data

Master0
Write Data

Master1
Write Data

16© Accellera Systems Initiative

AXI4 Fabric Waveforms After HLS – Test #0 (Verilog)

Master0
Read Data

Master0
Write Data

Master1
Write Data

Master1
Read Data

Thoughput
in RTL

Matches
SystemC

17© Accellera Systems Initiative

AXI4 Bus Fabric using MatchLib – Test #1

AXI4 Router/

Splitter

AXI4 Router/

Splitter

AXI4

Arbiter

AXI4

Arbiter
DMA0

DMA1
AXI4 Router/

Splitter

AXI4 Fabric

RAM0

RAM1

CPU

Test #1: Concurrently,

DMA0 reads/writes 320 beats to RAM0

DMA1 reads 320 beats from RAM1 and writes to RAM0

Note contention on RAM0 writes

RAM0 and RAM1

each have one read

and one write port

18© Accellera Systems Initiative

AXI4 Bus Fabric Test #1 simulation logs

BEFORE HLS (SystemC simulation)

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 1

44 ns top.ram0 ram read addr: 000000000 len: 0ff

44 ns top.ram0 ram write addr: 000002000 len: 0ff

49 ns top.ram1 ram read addr: 000000000 len: 0ff

304 ns top.ram0 ram read addr: 000000800 len: 03f

308 ns top.ram0 ram write addr: 000006000 len: 0ff

560 ns top.ram1 ram read addr: 000000800 len: 03f

566 ns top.ram0 ram write addr: 000002800 len: 03f

632 ns top.ram0 ram write addr: 000006800 len: 03f

701 ns top dma_done detected. 1 1

701 ns top start_time: 46 ns end_time: 701 ns

701 ns top axi beats (dec): 320

701 ns top elapsed time: 655 ns

701 ns top beat rate: 2047 ps

701 ns top clock period: 1 ns

741 ns top finished checking memory contents

AFTER HLS (Verilog RTL simulation)

0 s top Stimulus started

6 ns top Running FABRIC_TEST # : 1

55 ns top/ram0 ram write addr: 000002000 len: 0ff

68 ns top/ram0 ram read addr: 000000000 len: 0ff

70 ns top/ram1 ram read addr: 000000000 len: 0ff

335 ns top/ram0 ram write addr: 000006000 len: 0ff

343 ns top/ram0 ram read addr: 000000800 len: 03f

598 ns top/ram1 ram read addr: 000000800 len: 03f

598 ns top/ram0 ram write addr: 000002800 len: 03f

670 ns top/ram0 ram write addr: 000006800 len: 03f

736 ns top dma_done detected. 1 1

736 ns top start_time: 55 ns end_time: 736 ns

736 ns top axi beats (dec): 320

736 ns top elapsed time: 681 ns

736 ns top beat rate: 2128 ps

736 ns top clock period: 1 ns

776 ns top finished checking memory contents

Two concurrent writes to RAM0 cause beat rate to be above two clock cycles.

19© Accellera Systems Initiative

AXI4 Fabric Waveforms Before HLS –Test#1 (SystemC)

256 beats from r_master0 256 beats from r_master1 64 beats

from

r_master0

64 beats

from

r_master1

Master0
Read Data

Master1
Read Data

Master0
Write Data

w_master0 fully utilized over 700 ns due to write contention

r_master0 and r_master1 underutilized due to write contention

20© Accellera Systems Initiative

AXI4 Fabric Waveforms After HLS – Test #1 (Verilog)

Master0
Read Data

Master0
Write Data

Master1
Read Data

Throughput
in RTL

Matches
SystemC

21© Accellera Systems Initiative

Recap: MatchLib and HLS Enable Modern D/V Flow

◼ Designer focuses on chip architecture, functionality, and throughput analysis/verification.

— HLS adds pipelining, optimizes microarchitecture, provides fully automated flow to placed gates.

◼ Focus of verification effort moves to C++/SystemC level, enabling much greater efficiency.

◼ Additional introductory material on MatchLib is publicly available on web:

— https://www.mentor.com/hls-lp/events/nvidia-design-and-verification-of-a-machine-learning-accelerator-
soc-using-an-object-oriented-hls-based-design-flow

— https://www.mentor.com/hls-lp/multimedia/early-axi4-soc-performance-verification-using-nvidia-matchlib-
and-catapult-systemc-hls

— https://uploads-
ssl.webflow.com/5a749b2fa5fde0000189ffc0/5d3b1bef8474c4537c1d494b_Khailany_Brucek_CRAFT_Final.p
df

— https://www.youtube.com/watch?v=n8_G-CaSSPU

— https://forums.accellera.org/files/category/2-systemc/

22© Accellera Systems Initiative

https://www.mentor.com/hls-lp/events/nvidia-design-and-verification-of-a-machine-learning-accelerator-soc-using-an-object-oriented-hls-based-design-flow
https://www.mentor.com/hls-lp/multimedia/early-axi4-soc-performance-verification-using-nvidia-matchlib-and-catapult-systemc-hls
https://uploads-ssl.webflow.com/5a749b2fa5fde0000189ffc0/5d3b1bef8474c4537c1d494b_Khailany_Brucek_CRAFT_Final.pdf
https://www.youtube.com/watch?v=n8_G-CaSSPU
https://forums.accellera.org/files/category/2-systemc/

MatchLib Open Source Example Kit

• https://forums.accellera.org/files/category/2-systemc/

• Or Google: MatchLib Accellera SystemC Evolution Day

• This kit contains a representative set of MatchLib examples presented at
Accellera SystemC Evolution Day 2020 and fully self-contained source
files and scripts so that the examples can be built and run on any linux
compatible system with no other required software. All contents of the
kit are open source.

• Trouble downloading? Contact stuart_swan@mentor.com

© Accellera Systems Initiative 23

https://forums.accellera.org/files/category/2-systemc/

MatchLib Relationship to SystemC Standards

• SystemC Synthesizeable Subset Standard focuses on what’s in diagram
below

– Modules, Ports, Processes, clocks, resets, signal IO, datatypes

© Accellera Systems Initiative 24

Real World Design Example

• Consider a real world example:

– May have 100s or 1000s of SystemC processes

– May generate millions of gates

– May have very complex interconnect

– Biggest risks may be in interconnect

© Accellera Systems Initiative 25

In Real World - Interconnect Modeling is Key

• In pre-HLS model, need:

– Throughput accuracy

– Message latency and capacity back annotation

– Random stall injection

– Waveform generation

– Transaction logging and debugging

– Accurate and also fast TLM modes

– Integration with SV UVM

© Accellera Systems Initiative 26

Proposed SystemC HLS Standards Layers

© Accellera Systems Initiative 27

SystemC Language Standard

SystemC Synthesizable Subset Standard

SystemC Synthesizable Connections Standard

SystemC MatchLib IP Blocks Standard

Throughput accurate modeling

Message latency and capacity back annotation

Random stall injection

Waveform generation

Transaction logging and debugging

Accurate and also fast TLM modes

Parameterized AXI4 Fabric Components

Banked Memories

Crossbar, Reorder Buffer, Cache

Parameterized NOC components

