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Standard-Compliant Parallel SystemC

• IEEE Standard 1666™-2011
– Revision of IEEE Std. 1666-2005

– Standard SystemC®

Language Reference Manual

…unfortunately stands in the way
of parallel SystemC simulation!

 SystemC Evolution Day 2016
 “Seven Obstacles in the Way

of Parallel SystemC Simulation”,
Rainer Doemer, Munich, Germany, May 2016.

 SystemC standard

… must embrace true parallelism

… must evolve in a major revision (3.x)
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Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Process instances at the same time (t,δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming
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Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Alternative: SystemC Compiler!
Use static analysis to prevent parallel access conflicts.
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Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES)  is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 The general notion of shared state needs attention…
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[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

Yes: Carefully review and revise the SystemC API!
Adjust the proof-of-concept simulator accordingly.

Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121
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[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2];      // Array of 10-bit integers
[...]

Yes: Multi-thread safe SystemC primitives!
Adjust the proof-of-concept simulator accordingly.
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Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
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[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.

Yes: Derive sc_channel from sc_module. Fixed!

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0
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No: Compiler can ensure safety in TLM-2.0!
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Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, eliminate SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))
• Synchronize, communicate through events and channels

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 9

Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

No:  SC_METHOD is fine!
Compiler can recode them to true parallel threads.

Yes: Parallel mindset! SystemC evolution!

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES is one solution (fully automatic, accurate)
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Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.

Not sure… Future Work!
Compiler analysis can likely help here as well.
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A Compiler-Based Approach

• While the SystemC standard has not changed,
my group has worked hard
 “Let’s make the best of it!”

• Goals
– Accept SystemC as it is (well, most of it)

– Build the best parallel SystemC simulator possible

– Aim for maximum compliance with the standard

 We took this risk, and created RISC!
 Recoding Infrastructure for SystemC

 A dedicated SystemC compiler
with parallel SystemC simulator
can overcome the 7 obstacles …
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RISC Compiler and Simulator

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler (from LLNL)
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RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source 
transformations

Source:
Lawrence Livermore National Laboratory (LLNL)
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RISC Compiler and Simulator

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation
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RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

RISC Compiler and Simulator
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RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Segment conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 1: Build a Segment Graph
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Step 2:
Perform Conflict Analysis

RISC Compiler and Simulator
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RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Segment conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Instrumentation!

RISC Compiler and Simulator

• Compiler and Simulator work hand in hand
– Compiler performs conservative conflict analysis

– Analysis results are passed to the simulator

– Simulator can make safe scheduling decisions quickly
Maximum parallelism

 Fast simulation
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RISC Simulator

C++
Compiler

Out-of-Order
Parallel

Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

Input Model

Parallel
SystemC
Library

Parallel
C++ Model
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PAR MT SIMD MT+SIMD
1
2
4
8

16
32
64

128
256

• Many-Core Target Platform: Intel® Xeon Phi™
– Exploiting thread- and data-level parallelism [DAC’17]

– Mandelbrot renderer (graphics pipeline application)

• Experimental Results:

 Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!
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MT

SIMD

MT+SIMD

Experiments and Results

PAR MT SIMD MT+SIMD
1 1.00
2 1.68
4 3.04
8 5.84

16 11.37
32 21.32
64 41.07

128 46.29
256 49.90

PAR MT SIMD MT+SIMD
1 1.00 6.92
2 1.68 6.92
4 3.04 6.92
8 5.84 6.92

16 11.37 6.92
32 21.32 6.91
64 41.07 6.90

128 46.29 6.89
256 49.90 6.87

PAR MT SIMD MT+SIMD
1 1.00 6.92 6.94
2 1.68 6.92 11.77
4 3.04 6.92 21.19
8 5.84 6.92 40.10

16 11.37 6.92 72.52
32 21.32 6.91 137.21
64 41.07 6.90 208.41

128 46.29 6.89 212.96
256 49.90 6.87 194.19

Speedup

Threads

RISC Open Source

• RISC Compiler and Simulator, Release V0.6.3
 http://www.cecs.uci.edu/~doemer/risc.html#RISC063

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.6.3.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, simd, visual, …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 19-04: CECS_TR_19_04.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc063/
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bash# docker pull ucirvinelecs/risc063
bash# docker run -it ucirvinelecs/risc063
[dockeruser]# cd demodir
[dockeruser]# make play_demo
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Conclusion

• Recoding Infrastructure for SystemC
– Introduction of a dedicated SystemC compiler

– Out-of-order parallel simulation on multi- and many-core hosts

– Maximum compliance with IEEE SystemC semantics

 Overcomes 7 Obstacles towards Parallel SystemC
1. Co-Routine Semantics: Conflicts prevented by compiler
2. Simulator State: Revised SystemC API
3. Lack of Thread Safety: Revised SystemC primitives
4. Class sc_channel: Fixed
5. TLM-2.0: Safety ensured by compiler
6. Sequential Mindset: Not a problem
7. Temporal Decoupling: Future work…

• Open Source
– Thanks to Intel Corporation!
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