
Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 1

RISC: A Compiler for Parallel SystemC
with Maximum Standard Compliance

Rainer Dömer

Center for Embedded and Cyber‐Physical Systems

University of California, Irvine

Presentation Copyright Permission

– A non‐exclusive, irrevocable, royalty‐free copyright
permission is granted by Rainer Doemer, CECS, to use this
material in developing all future revisions and editions of
the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based
on this standard.

© Accellera Systems Initiative 2

1

2

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 2

Standard-Compliant Parallel SystemC

• IEEE Standard 1666™-2011
– Revision of IEEE Std. 1666-2005

– Standard SystemC®

Language Reference Manual

…unfortunately stands in the way
of parallel SystemC simulation!

 SystemC Evolution Day 2016
 “Seven Obstacles in the Way

of Parallel SystemC Simulation”,
Rainer Doemer, Munich, Germany, May 2016.

 SystemC standard

… must embrace true parallelism

… must evolve in a major revision (3.x)

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 3

Obstacle 1: Co-Routine Semantics

• Fact: IEEE 1666-2011 requires co-operative multitasking
 Quotes from Section “4.2.1.2 Evaluation phase” (pages 17, 18):

• Problem: Uninterrupted execution guarantee

• Proposal: Explicitly allow parallel execution, preemption
– Process instances at the same time (t,δ) may execute in parallel

• Model designer must write thread safe code, avoid race conditions

 Parallel systems, parallel models, parallel programming

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 4

Since process instances execute without interruption, only a single process instance can be
running at any one time, […]. A process shall not pre-empt or interrupt the execution of another
process. This is known as co-routine semantics or co-operative multitasking.
[…]
The scheduler is not pre-emptive. An application can assume that a method process will execute
in its entirety without interruption, and a thread or clocked thread process will execute the code
between two consecutive calls to function wait without interruption.

An implementation running on a machine that provides hardware support for concurrent processes
may permit two or more processes to run concurrently, provided that the behavior appears identical
to the co-routine semantics defined in this subclause. In other words, the implementation would
be obliged to analyze any dependencies between processes and to constrain their execution to
match the co-routine semantics.

Alternative: SystemC Compiler!
Use static analysis to prevent parallel access conflicts.

3

4

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 3

Obstacle 2: Simulator State

• Fact: Discrete Event Simulation (DES) is presumed
 Example from IEEE 1666-2011, page 31: sysc/kernel/sc_simcontext.h

• Problem: Parallel Discrete Event Simulation (PDES)
is different from sequential DES

– After elaboration, there may be multiple running threads

– Scheduling may happen while some threads are still running

• Proposal: Carefully review simulator state primitives
and revise as needed for PDES

 Adapt the functions and APIs for parallel execution semantics

 The general notion of shared state needs attention…

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 5

[...]
bool sc_pending_activity_at_current_time();
bool sc_pending_activity_at_future_time();
bool sc_pending_activity();
bool sc_time_to_pending_activity();
[...]

Yes: Carefully review and revise the SystemC API!
Adjust the proof-of-concept simulator accordingly.

Obstacle 3: Lack of Thread Safety

• Fact: Primitives are generally not multi-thread safe
 Suspicious example from IEEE 1666-2011, page 194:

• Problem: Parallel execution may lead to race conditions
– Race conditions result in non-deterministic/undefined behavior

– Explicit protection (e.g. by mutex locks) is cumbersome

– Identifying problematic constructs is difficult
• Example: class sc_context, commented as “co-routine safe”

• Proposal: Require all primitives to be multi-thread safe
– Carefully revise the proof-of-concept SystemC library
 Encouraging item: async_request_update is thread-safe!

 See “5.15 sc_prim_channel”, IEEE 1666-2011, page 121

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 6

[...]
sc_length_param length10(10);
sc_length_context cntxt10(length10); // length10 now in context
sc_int_base int_array[2]; // Array of 10-bit integers
[...]

Yes: Multi-thread safe SystemC primitives!
Adjust the proof-of-concept simulator accordingly.

5

6

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 4

Obstacle 4: Class sc_channel

• Fact: sc_channel is an alias type for sc_module
 IEEE 1666-2011, Section “5.2.23 sc_behavior and sc_channel” (page 56):

 systemc-2.3.1/include/sysc/kernel/sc_module.h

• Problem: Alias type is only another name, no new type
– Language does not distinguish modules and channels

 No separation of communication and computation
• Breaks a key system-level design principle…

• Proposal: Class sc_channel, derived from sc_module
Module encapsulates computation (hosts threads/processes)

Channel encapsulates communication (implemented interfaces)
SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 7

[...]
typedef sc_module sc_channel;
typedef sc_module sc_behavior;
[...]

The typedefs sc_behavior and sc_channel are provided for users to express their intent.
NOTE—There is no distinction between a behavior and a hierarchical channel
other than a difference of intent. Either may include both ports and public member functions.

Yes: Derive sc_channel from sc_module. Fixed!

• Fact: Channel concept has disappeared
 “The Definitive Guide to SystemC: TLM-2.0 and the IEEE 1666-2011 Standard”,

Presentation by David Black, Doulos, at DAC’15 Training Day

• Problem:
Where is
the channel?

– Interface methods
are well-defined,
but not contained

– Separation of concerns
“Computation ≠

Communication”
principle is broken

– Proposal:
Encapsulate communication methods in channels

Obstacle 5: TLM-2.0

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 8

No: Compiler can ensure safety in TLM-2.0!

7

8

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 5

Obstacle 6: Sequential Mindset

• Fact: SC_METHOD is preferred over SC_THREAD,
context switches are considered overhead

 IEEE 1666-2011, Section 5.2.11 on threads (page 44):

• Problem: Sequential modeling is encouraged
– However, systems are parallel by nature, so should be models

– Avoiding context switches is the wrong optimization criterion

• Proposal: Use actual threads, eliminate SC_METHOD,
identify dependencies among threads

 Promote parallel mindset, with true thread-level parallelism
• Speed due to parallel execution, not due to fewer context switches

 Explicitly express task relations (use e.notify(), wait(e))
• Synchronize, communicate through events and channels

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 9

Each thread or clocked thread process requires its own execution stack.
As a result, context switching between thread processes may impose a simulation overhead
when compared with method processes.

No: SC_METHOD is fine!
Compiler can recode them to true parallel threads.

Yes: Parallel mindset! SystemC evolution!

Obstacle 7: Temporal Decoupling

• Fact: TD is designed to speed up sequential DES
 IEEE 1666-2011, Section 12.1 on “TLM-2.0 global quantum” (page 453):

– Abstraction trades off accuracy for higher simulation speed

• Problem: PDES is a different foundation than DES
– TD design assumptions are not necessarily true for PDES

– Global time quantum is a technical obstacle (race condition)

• Proposal: Reevaluate costs/benefits, redesign if needed
– Analyze TD idea for PDES, adopt advantages, drop drawbacks

• Avoid tlm_global_quantum, promote wait(time)

– Consider the use of a compiler to optimize scheduling, timing
• Out-of-Order PDES is one solution (fully automatic, accurate)

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 10

Temporal decoupling permits SystemC processes to run ahead of simulation time for an amount
of time known as the time quantum and is associated with the loosely-timed coding style.
Temporal decoupling permits a significant simulation speed improvement
by reducing the number of context switches and events.

Not sure… Future Work!
Compiler analysis can likely help here as well.

9

10

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 6

A Compiler-Based Approach

• While the SystemC standard has not changed,
my group has worked hard
 “Let’s make the best of it!”

• Goals
– Accept SystemC as it is (well, most of it)

– Build the best parallel SystemC simulator possible

– Aim for maximum compliance with the standard

 We took this risk, and created RISC!
 Recoding Infrastructure for SystemC

 A dedicated SystemC compiler
with parallel SystemC simulator
can overcome the 7 obstacles …

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 11

RISC Compiler and Simulator

• RISC Software Stack
 Recoding Infrastructure for SystemC

– C/C++ foundation

– ROSE compiler (from LLNL)

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 12

RISC

C/C++ Foundation

ROSE IR

• ROSE Internal Representation

• Explicit support for

• Source code analysis

• Source-to-source
transformations

Source:
Lawrence Livermore National Laboratory (LLNL)

11

12

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 7

RISC Compiler and Simulator

• RISC Software Stack
 Recoding Infrastructure for SystemC

– SystemC Internal
Representation

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 13

RISC

C/C++ Foundation

ROSE IR

SystemC IR

• Class hierarchy to represent
SystemC objects

RISC Compiler and Simulator

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 14

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Segment conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Step 1: Build a Segment Graph

13

14

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 8

Step 2:
Perform Conflict Analysis

RISC Compiler and Simulator

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 15

RISC

Segment Graph

C/C++ Foundation

ROSE IR

SystemC IR

• RISC Software Stack
 Recoding Infrastructure for SystemC

1) Segment Graph construction

2) Segment conflict analysis

Compilation,
Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

Segment Graph
Construction

Parallel Access
Conflict Analysis

…
Model

_par.cpp

SystemC Model Parallel
C++ Model

Seg 2

Seg 1

Seg 3

Seg 4 Seg 5

Seg 6

Segment Graph

Conflict Seg 1 Seg 2 Seg 3

Seg 1 True

Seg 2 True True

Seg 3 True

Seg 3
R: a, b
W: x, y
RW:

Seg 2
R: a, b
W: x
RW: z

Instrumentation!

RISC Compiler and Simulator

• Compiler and Simulator work hand in hand
– Compiler performs conservative conflict analysis

– Analysis results are passed to the simulator

– Simulator can make safe scheduling decisions quickly
Maximum parallelism

 Fast simulation

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 16

RISC Simulator

C++
Compiler

Out-of-Order
Parallel

Simulation

SystemC Compiler

RISCsystemc.h

Model.cpp

… Source Code
Instrumentation

systemc
_par.h

Model
_par.cpp

Input Model

Parallel
SystemC
Library

Parallel
C++ Model

15

16

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 9

PAR MT SIMD MT+SIMD
1
2
4
8

16
32
64

128
256

• Many-Core Target Platform: Intel® Xeon Phi™
– Exploiting thread- and data-level parallelism [DAC’17]

– Mandelbrot renderer (graphics pipeline application)

• Experimental Results:

 Increasing degree of parallelism (PAR = number of threads)
reaches a combined multi-threading (MT)
and data-level (SIMD) speedup of up to 212x!

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 17

0

50

100

150

200

250

1 2 4 8 16 32 64 128 256

MT

SIMD

MT+SIMD

Experiments and Results

PAR MT SIMD MT+SIMD
1 1.00
2 1.68
4 3.04
8 5.84

16 11.37
32 21.32
64 41.07

128 46.29
256 49.90

PAR MT SIMD MT+SIMD
1 1.00 6.92
2 1.68 6.92
4 3.04 6.92
8 5.84 6.92

16 11.37 6.92
32 21.32 6.91
64 41.07 6.90

128 46.29 6.89
256 49.90 6.87

PAR MT SIMD MT+SIMD
1 1.00 6.92 6.94
2 1.68 6.92 11.77
4 3.04 6.92 21.19
8 5.84 6.92 40.10

16 11.37 6.92 72.52
32 21.32 6.91 137.21
64 41.07 6.90 208.41

128 46.29 6.89 212.96
256 49.90 6.87 194.19

Speedup

Threads

RISC Open Source

• RISC Compiler and Simulator, Release V0.6.3
 http://www.cecs.uci.edu/~doemer/risc.html#RISC063

• Installation notes and script: INSTALL, Makefile

• Open source tar ball: risc_v0.6.3.tar.gz

• Docker script and container: Dockerfile

• Doxygen documentation: RISC API, OOPSC API
• Tool manual pages: risc, simd, visual, …

• BSD license terms: LICENSE

– Companion Technical Report
• CECS Technical Report 19-04: CECS_TR_19_04.pdf

 Docker container:
 https://hub.docker.com/r/ucirvinelecs/risc063/

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 18

bash# docker pull ucirvinelecs/risc063
bash# docker run -it ucirvinelecs/risc063
[dockeruser]# cd demodir
[dockeruser]# make play_demo

17

18

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 10

Conclusion

• Recoding Infrastructure for SystemC
– Introduction of a dedicated SystemC compiler

– Out-of-order parallel simulation on multi- and many-core hosts

– Maximum compliance with IEEE SystemC semantics

 Overcomes 7 Obstacles towards Parallel SystemC
1. Co-Routine Semantics: Conflicts prevented by compiler
2. Simulator State: Revised SystemC API
3. Lack of Thread Safety: Revised SystemC primitives
4. Class sc_channel: Fixed
5. TLM-2.0: Safety ensured by compiler
6. Sequential Mindset: Not a problem
7. Temporal Decoupling: Future work…

• Open Source
– Thanks to Intel Corporation!

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 19

Acknowledgments

• For solid work, fruitful discussions, and honest feedback,
I would like to thank:

– My team at UCI
• Emad Arasteh, Vivek Govindasamy, Yutong Wang

• Zhongqi Cheng, Daniel Mendoza

• Guantao Liu, Tim Schmidt

• Farah Arabi, Aditya Harit, Spencer Kam

– Our collaborators at Intel
• Ajit Dingankar

• Desmond Kirkpatrick

• Abhijit Davare

• Philipp Hartmann

– And many others…

• This work has been supported in part by substantial funding
from Intel Corporation. Thank you!

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 20

19

20

Pushing the Limits of Standard-Compliant
Parallel SystemC Simulation

SystemC Evolution Fika,
April 7, 2022

(c) 2022 R. Doemer, CECS 11

References (1)

• [FDL’21] E. Arasteh, R. Dömer: "Improving Parallelism in System Level Models by
Assessing PDES Performance", FDL, Antibes, France, Sep. 2021

• [Springer’20] R. Dömer, Z. Cheng, D. Mendoza, E. Arasteh: "Pushing the Limits of Parallel
Discrete Event Simulation for SystemC", in "A Journey of Embedded and Cyber-Physical
Systems" by Jian-Jia Chen, Springer Nature, Switzerland, Aug. 2020

• [IJPP’20] Z. Cheng, T. Schmidt, R. Dömer: "Scaled Static Analysis and IP Reuse for Out-of-
Order Parallel SystemC Simulation", IJPP, Springer, Jun. 2020

• [DATE’20] D. Mendoza, Z. Cheng, E. Arasteh, R. Dömer: "Lazy Event Prediction using
Defining Trees and Schedule Bypass for Out-of-Order PDES", DATE, Grenoble, France,
March 2020.

• [ASPDAC’20] Z. Cheng, A. Arasteh, R. Dömer: “Event Delivery using Prediction for Faster
Parallel SystemC Simulation", accepted at ASPDAC, Beijing, China, Jan. 2020.

• [CODES+ISSS’19] Z. Cheng, R. Dömer: "Analyzing Variable Entanglement for Parallel
Simulation of SystemC TLM-2.0 Models",
ACM TECS, vol. 18, no. 5s, article 79, 20 pages, Oct. 2019.

• [IESS’19a] Z. Cheng, T. Schmidt, R. Dömer: "Enabling IP Reuse and Protection in Out-of-
Order Parallel SystemC Simulation", Proceedings of IESS, Springer, Friedrichshafen,
Germany, Sep. 2019.

• [IESS’19b] E. Arasteh, R. Dömer: “An Untimed SystemC Model of GoogLeNet",
Proceedings of IESS, Springer, Friedrichshafen, Germany, Sep. 2019.

• [DVCon’19] D. Mendoza, A. Dingankar, Z. Cheng, R. Dömer: "Integrating Parallel SystemC
Simulation into Simics® Virtual Platform", DVCon Europe, Munich, Germany, Oct. 2019.

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 21

References (2)

• [DATE’18] T. Schmidt, Z. Cheng, R. Dömer: "Port Call Path Sensitive Conflict Analysis for
Instance-Aware Parallel SystemC Simulation", Proceedings of DATE, Dresden, Germany,
March 2018.

• [DAC’17] T. Schmidt, G. Liu, R. Dömer: "Towards Ultimate Parallel SystemC Simulation
through Thread and Data Level Parallelism", Proceedings DAC, Austin, TX, June 2017.

• [Springer’17] R. Dömer, G. Liu, T. Schmidt: "Parallel Simulation", chapter 17 in "Handbook of
Hardware/Software Codesign" by S. Ha and J. Teich, Springer Netherlands, June 2016.

• [ASPDAC’17] T. Schmidt, G. Liu, R. Dömer: "Hybrid Analysis of SystemC Models for Fast and
Accurate Parallel Simulation", Proceedings ASPDAC, Tokyo, Japan, January 2017.

• [IEEE ESL’16] R. Dömer: "Seven Obstacles in the Way of Standard-Compliant Parallel
SystemC Simulation", IEEE Embedded Systems Letters, vol. 8, no. 4, pp. 81-84, Dec. 2016.

• [DAC’15] R. Dömer: “Towards Parallel Simulation of Multi-Domain System Models", Keynote,
DAC workshop on System-to-Silicon Performance Modeling and Analysis, June 2015.

• [IEEE TCAD’14] W. Chen, X. Han, C. Chang, G. Liu, R. Dömer: "Out-of-Order Parallel
Discrete Event Simulation for Transaction Level Models",
IEEE Transactions on CAD, vol. 33, no. 12, pp. 1859-1872, December 2014.

• [DATE’14] W. Chen, X. Han, R. Dömer: "May-Happen-in-Parallel Analysis based on Segment
Graphs for Safe ESL Models", Proceedings of DATE, Dresden, Germany, March 2014.

• [DATE’13] W. Chen, R. Dömer: "Optimized Out-of-Order Parallel Discrete Event Simulation
Using Predictions", Proceedings of DATE, Grenoble, France, March 2013.

• [DATE’12] W. Chen, X. Han, R. Dömer: "Out-of-Order Parallel Simulation for ESL Design",
Proceedings of DATE, Dresden, Germany, March 2012.

SystemC Evolution Fika, April 7, 2022 (c) 2022 R. Doemer, CECS 22

21

22

