Parallel Programming on Top of SystemC

Matthieu Moy

Laboratoire de I'Informatique du Parallélisme
CASH Team

April 2022

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<1/20>

Copyright Permission

A non-exclusive, irrevocable, royalty-free copyright permission is granted by Matthieu Moy
to use this material in developing all future revisions and editions of the resulting draft and
approved Accellera Systems Initiative SystemC standard, and in derivative works based
on the standard.

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <2/20 >

Problems and solutions for parallel execution of SystemC/TLM

(1) Which process can be run in parallel?

(2) How to ensure co-routine semantics?

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <3/20 >

Problems and solutions for parallel execution of SystemC/TLM

(1) Which process can be run in parallel?
~ Same simulated time = parallel?

(2) How to ensure co-routine semantics?
~ run-time monitoring (SCale), static analysis (RISC)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <3/20 >

Problems and solutions for parallel execution of SystemC/TLM

(1) Which process can be run in parallel? < focus of this talk
~ Same simulated time = parallel?

(2) How to ensure co-routine semantics?
~ run-time monitoring (SCale), static analysis (RISC)

Our proposal = additional constructs:
Desynchronization (1) / Synchronization (2) (somehow)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<3/20 >

Bad news ...

Number of process (SC_THREAD + SC_METHOD) per §-cycle:

A

mpeg2 — h264 ;‘
Y] E—
mpeg2 [:::
boot-+init ;:::;:;::::;:;::::::::::;:;:i:::::;:::;::::::;:;p;;;;;;;l
0% 50 % 100 %

[EE1ProcE22 ®3 m 4 and morg

(Platform from STMicroelectronics, more data in “Parallel Simulation of Loosely Timed
SystemC/TLM Programs: Challenges Raised by an Industrial Case Study”, MDPI 2015)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <4/20 >

https://hal.archives-ouvertes.fr/hal-01321055
https://hal.archives-ouvertes.fr/hal-01321055

SC-DURING: The Idea

SC_THREAD 1

OS thread_1

SC_THREAD 2

OS thread 2

SC_THREAD_N

OS thread_N

SystemC

@ Unmodified SystemC

@ Some computation delegated to other threads

OS thread

@ Weak synchronization between SystemC and threads thanks to tasks with duration

Matthieu Moy (LIP)

Parallel Programming on Top of SystemC

April 2022

<5/20 >

Simulated Time in SystemC and SC-DURING

O A
£
(O]
—
2
» B
(@]
c P
=
>
©
[&]
o Q
Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <6/20 >

Simulated Time in SystemC and SC-DURING
f()

ait (20) Process A: |
O A | // Computation
E | £0);
§ | | // Time taken by f
@ B | | wait (20) ;
2P
5
?
3 Q
Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<6/20>

Simulated Time in SystemC and SC-DURING

f)
Qﬁait(zo) Process A: |
O | // Computation
A
E | £0);
1 | | //Time taken by f
o B | | wait (20);
g(zqait (20) Process P:
g’ =) q(};
5 wailt (20);
o
% Q

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <6/20 >

Simulated Time in SystemC and SC-DURING
f(zﬂait (20) Process A: |

A | // Computation

| £0);

| | //Time taken by f

| wait (20);

wait (20) Process P:

P h) —— g();
wailt (20);

during (15, h);

sc-during

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <6/20 >

Simulated Time in SystemC and SC-DURING
f(zﬂait (20) Process A: |

A | // Computation

| £0);

| | //Time taken by f

| wait (20);

wait (20) Process P:

P h) —— g();
wailt (20);

during (15, h);

sc-during

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <6/20 >

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(£f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion
}
B |
Thread

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <7/20 >

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(£f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

A
WY

Thread

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <7/20 >

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(£f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

A
WY

@

Create
thread i

Thread —— f

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <7/20 >

SC-DURING: First (Naive) Implementation
void during(sc_core::sc_time d,
std::function<void()> £) {
C) std::thread t(£f); // Thread creation
C) sc_core::wait(d); // SystemC executes
©)

t.join(); // Wait for completion

} during(d, f);

|/
®

Create (2) wait(d)
thread i

Thread —— f

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <7/20 >

(o8

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,
std::function<void()> £) {

C) std::thread t(£f); // Thread creation
C) sc_core::wait(d); // SystemC executes
() t.join(); // Wait for completion

} during(d, f);

5
@

Create (2) wait(d)
thread i

Thread —— f

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <7/20 >

(o8

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,

}

Matthieu Moy (LIP)

std::function<void()> £)
@ std::thread t (£);
C) sc_core::wait (d);

t.join(); // Wait for completion

(o8

Thread ———

during(d, f);

{

// Thread creation
// SystemC executes

|
Create (2) wait(d) oin)
thread | J
f
Parallel Programming on Top of SystemC April 2022

<7/20>

SC-DURING: First (Naive) Implementation

void during(sc_core::sc_time d,

}

Matthieu Moy (LIP)

std::function<void()> £)
@ std::thread t (£);
C) sc_core::wait (d);

t.join(); // Wait for completion

(o8

Thread ———

during(d, f);

{

// Thread creation
// SystemC executes

|
Create (2) wait(d) oin)
thread | J
f
Parallel Programming on Top of SystemC April 2022

<7/20>

Wait ... are you saying that
parallelization is just about fork/join?

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <8/20 >

Wait ... are you saying that
parallelization is just about fork/join?

Well, sometimesi it is ...

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <8/20 >

When Things are Easy: Pure Function

Before After

compute_in_systemc () ; compute_1in_systemc () ;

// my profiler says it’s
// performance critical.

// does not communicate // Won’t be a performance
// with other processes. // bottleneck anymore
big_computation(); during (10, SC_MS,

wait (10, SC_MS); big_computation);
next_computation () ; next_computation () ;

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <9/20 >

Wait ... are you saying that
parallelization is just about fork/join?

Well, sometimesi it is ...

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <10/20 >

Wait ... are you saying that
parallelization is just about fork/join?

Well, sometimesi it is ...

... and sometimes it isn’t

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <10/20 >

Wait ... are you saying that
parallelization is just about fork/join?

Well, sometimesi it is ...

... and sometimes it isn’t:

Time synchronization: make sure things are executed at the right
simulated time

Data/scheduler synchronization: avoid data-race between tasks,
processes and the SystemC scheduler.

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <10/20 >

SC-DURING: Synchronization

extra_time(t): increase current task duration

wait (5)

P

Matthieu Moy (LIP)

initial
duration

extra time

Parallel Programming on Top of SystemC

April 2022

<11/20 >

SC-DURING: Synchronization

extra_time(t): increase current task duration
wait (5)

P dmgit?cl)n extratime ——

catch_up(t): block task until SystemC’s time reaches the end of the current task

while (!c) {
extra_time (10, SC_NS);
catch_up(); // ensures fairness

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<11/20 >

extra_time (): Sketch of Implementation
@ SystemC side:
void during(duration, routine) {
end = now() + duration;
std::thread t (routine);
// used to be just sc_core::wait (duration)

while (now() != end)
sc_core::wait (end — now());
t.Jjoin();

}
@ SC-DURING task side:

void extra_time (duration) { void catch_up () {
end += duration; while (now () != end)
} // avoid busy-waiting

condition.wait ();

}

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <12/20 >

Temporal decoupling and SC-DURING

Plain SystemC

£0);

// instead of wait (42)
t_local += 42;

g();

t_local += 12;

// Re-synchronize with
// SystemC time

wait (t_local);

t_local = 0;

i0);

Matthieu Moy (LIP)

Inside SC-DURING tasks

£();
// instead of wait (42)
extra_time (42);

g0);

extra_time(12);

// Re-synchronize with
// SystemC time
catch_up();

i0);

Parallel Programming on Top of SystemC April 2022

<13/20 >

sc_call (): be cooperative for a while

sc_call(f): call function £ in the context of SystemC

e.notify(); // Forbidden in during tasks

sc_call([]{e.notify()});
sc_call ([1{i++"});

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <14/20 >

sc_call (): Underlying Mechanism
during (5, £f);

ST

thread

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <15/20 >

sc_call (): Underlying Mechanism

during (5, £f);
ey
B

C

wait(d or sync_ev)

create
thread

Yy

thread —

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <15/20 >

sc_call (): Underlying Mechanism
during (5, £f);

A
B

=i
create
thread

wait(d or sync_ev)

Yy

thread — —

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <15/20 >

sc_call (): Underlying Mechanism

during (5, £f);

A

/[

B

=i
create
thread

~

wait(d or sync_ev)

thread —

Matthieu Moy (LIP)

Parallel Programming on Top of SystemC

April 2022

<15/20 >

sc_call (): Underlying Mechanism
during (5, £f);

;\F
C{ g

wait(d or sync_ev)

create
thread notify
d sync_ev
thread —
sc_call (qg)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<15/20 >

sc_call (): Underlying Mechanism
during (5, £f);

i

B
¢ :
wait(d or sync_ev)
create sc_call_f
thread notify =0
d sync_ev l
thread — —
sc_call (qg)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<15/20 >

sc_call (): Underlying Mechanism
during (5, £f);

A [
B
o :

wait

wait(d or sync_ev)

create sc_call_f
thread notify =0
l sync_ev 1
thread —— —
sc_call (qg)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<15/20 >

sc_call (): Underlying Mechanism
during (5, £f);

i

b

B
¢ :
wait(d or sync_ev) wait
create sc_call_f join
thread notify =0 thread
l sync_ev d
thread —— —
sc_call (qg)

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<15/20 >

sc_call: Sketch of Implementation

void during(duration, f) {

end = now() + duration;
std::thread t (f);
while (now () != end) {

// wait sync_ev

// with timeout:

sc_core::wait
(sync_ev, // <—-
end — now());

if (sc_call f) {
sc_call_f();// <——
sc_call_f = 0;
condition.notify();

}
t.Jjoin();
Matthieu Moy (LIP)

void sc_call(f) {
sc_call_f = £;
// Implemented w/
// async_request_update ()
async_notify_event

(sync_ev);
while(sc_call_f !'= 0) {
condition.wait ();

Parallel Programming on Top of SystemC April 2022

<16/20 >

SC-DURING: Implementations

SC_THREAD _1 sync_task_1 OS thread_1

SC_THREAD 2 sync_task_2 OS thread_2

SC_THREAD N sync_task_N OS thread_ N

SystemC OS Thread
Strategies:

SEQ Sequential (= reference)
THREAD Thread creation + destruction for each task
POOL Pre-allocated set of threads
ONDEMAND Thread created on demand and reused

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<17/20 >

SC-DURING: Results

14
12
10
8 .
6 ; —
fi IIIIIII'I'I'II'II IIIIIII IIIIIIII
4 I -
o >
il g, B AP
2 i R T
H
H .
0 , Number of procgssor in the model , ,
30 40 50 60
Test

10 20
machine : 4 x 12 = 48 cores

Parallel Programming on Top of SystemC April 2022 <18/20 >

Matthieu Moy (LIP)

SC-DURING: Conclusion

@ New way to express concurrency in the platform
@ Allows parallel execution of loosely-timed (clockless) systems
@ No modification of SystemC = could work with a parallel SystemC kernel

@ Possible improvement: performance optimizations (e.g. atomic operations + polling
instead of system calls)

Try it:
https://moy.gitlab.io/sc—during/

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <19/20 >

https://moy.gitlab.io/sc-during/

Whishlist for Standard

@ No change needed, sc-during already works ;-)
@ Implementation detail: better way to implement sc_call would be nice
@ More general: letting the user express loose timing directly in SystemC?

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <20/20 >

https://moy.gitlab.io/sc-during/

Whishlist for Standard

@ No change needed, sc-during already works ;-)
@ Implementation detail: better way to implement sc_call would be nice
@ More general: letting the user express loose timing directly in SystemC?

Questions?

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022

<20/20 >

https://moy.gitlab.io/sc-during/

Whishlist for Standard

@ No change needed, sc-during already works ;-)
@ Implementation detail: better way to implement sc_call would be nice
@ More general: letting the user express loose timing directly in SystemC?

Questions?
Thank Youl!

https://moy.gitlab.io/sc—during/

Matthieu Moy (LIP) Parallel Programming on Top of SystemC April 2022 <20/20 >

https://moy.gitlab.io/sc-during/

