
The Intel® Simics® Simulator and SystemC*
and Threading

Jakob Engblom, Director of Simulation Technical Ecosystem

jakob.engblom@intel.com

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Intel to use this material in developing all future revisions
and editions of the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based on the
standard.

© Accellera Systems Initiative 2

Legal Notice

No license (express or implied, by estoppel or otherwise) to any intellectual property rights is granted by this

document.

Intel disclaims all express and implied warranties, including without limitation, the implied warranties of

merchantability, fitness for a particular purpose, and non-infringement, as well as any warranty arising from course

of performance, course of dealing, or usage in trade.

Intel, the Intel logo, and Simics are trademarks of Intel Corporation or its subsidiaries in the U.S. and/or other

countries.

*Other names and brands may be claimed as the property of others

© Intel Corporation.

Designing Threading in the Simics® Simulator

• Threading handled by the framework
– Defined host-independent threading

semantics and threading execution modes
– User can enable/disable parallel execution

• Threading should affect as few modules as
possible
– Fundamentally, parallel/concurrent coding is

hard and should be isolated to a few places
in the code base

– Device models should not need to change to
enable threading – simplifies programming,
simplifies deployment of threading

– In practice, most parallelism is provided by
processors (and clocks), and a few features

• Revert to sequential execution on demand
– Support deterministic execution for software

debug
– Support debug of models by removing

threading as a complicating factor

• Losing determinism for performance is OK
– Fall back to slower deterministic mode if

needed

• Advanced thread programming available
– Support advanced use cases where the

standard threading solutions are insufficient

Threading should be easy and automatic for most modelers

Threading in the Simics® Simulator – Use Cases

Simics®

Target

Simics®

Simics®
Simics®

Target

Network

“Multimachine Accelerator “
Thread across long-latency networks

“Multicore Accelerator” (MCA)
Thread between processor cores sharing memory

Target

Processor
core

Memory

Devices

Processor
core

Processor
core

Processor
core

Target

Processor
core

Complex
Subsystem

Processor
core

Processor
core

Memory

Devices

“Subsystem multithreading”
Run separate (definition) subsystems on their own threads

Target

Interface
External

software,
emulator, etc.

Multithreading as coding pattern
Use a thread to interact with the outside asynchronous world

Devices

Complex
Subsystem

Processor
core

Devices

Simics®

How the Simics® Simulator uses Threads

Target 2

Processor
core

Complex Subsystem

Processor
core

Processor
core

Memory

Processor
core

DevicesMemory

Devices

Target 1

Network

Host hardware

Host OS

CoreCore Core Core

Processor
core

Processor
core

Memory

Devices

Functionality

OS thread
OS thread OS thread OS thread

Simics simulator thread scheduler

OS thread

JIT offload

OS thread

OS thread

Functionality
like tools and

extensions can
start their own

host threads

Model simulation
work is handled by

a dedicated
scheduler

JIT threads
come from a
specific pool

Simics® Simulator Threading Concepts

Simics®

Cell

Cell

link

Cell

Proc

device

device
device

Proc

Thread Domain (TD)
TD

Proc

Cell TD

Memory
(RAM)

Proc

device

Proc

Memory
(RAM)

TD

Cell TD

Proc

TD

Thread Domains (TD) are used to
indicate parts of the model that can

run concurrently with other TDs

Models in TDs are explicitly thread-
aware (SystemC* models are)

Cells: smallest loosely coupled unit.
Typically, a single target machine

Between cells, must use links to
communicate

Each cell is “easy” to run in parallel to
other cells (as long as there is no
shared state hiding in the code)

The Cell Thread Domain contains the
models that are not thread-aware,

preserves standard serial semantics
for models (only single thread

modifies)

= Reuse of existing device models

device

Very tightly coupled devices
can be thread-aware and run

in a TD (performance
optimization)

Simics®

SystemC* Models in the Simics® Simulator

• Use Accellera*-compliant SystemC models as-
is
– Including binary-compiled models
– ABI-compatibility required

• SystemC models are compiled into/linked into
a Simics module
– Each module can contain one or more top-level

adapters
– Each adapter can be instantiated multiple times in

the system model
– The adapter provides the interface between the

SystemC subsystem and the Simics simulation
environment

– The adapter provides a “co-execute” object that is
scheduled by the Simics simulator core to run the
model

– Modules are loaded dynamically when used

*Other names and brands may be claimed as the property of others

Module M .so/.dll

SystemC kernel

Adapter for class M

SystemC
model

SystemC
model

co-execute

Module N .so/.dll

SystemC kernel

Adapter for class N

SystemC
model

SystemC
model

co-execute

Instance of class N

Instance of class N

SystemC* Models and Threading

*Other names and brands may be claimed as the property of others

Simics®

Cell Cell

SystemC model M, instance 1

Instance 2

SystemC model N

Proc
Proc

TD
TD

TD

SystemC Kernel for
model M

SystemC context for instance 1

Context for Instance 2

co-execute

co-execute

Due to shared state in the SystemC kernel:

All instances from the same module must be in
the same TD and same Cell

SystemC model M,
instance 3

Other models can run in
parallel to the SystemC

models

SystemC models in a separate
module can run in parallel

SystemC model O

TD

co-execute

co-execute

The entire model runs in the
thread domain – not in the

Cell’s Thread Domain.

Cell TD

• The Simics® simulator can run multiple SystemC* models in parallel to
each other and to other Simics models
– Locking applied to accesses to shared state and devices, according to Simics API

• Parallelism is enabled using multiple separate kernels
– i.e., built on top, not inside of SystemC

– Semantics in each model is standard SystemC serial semantics

• Shared static state in the kernel limits available parallelism
– Fixing it requires an ABI change for the kernel

Summary

*Other names and brands may be claimed as the property of others

• The Public Release of the Intel® Simics® Simulator

– Complete Simics base product
• Includes the Simics SystemC* Library

• As well as Simics-native model builder tools

– Intel-based Quick-Start Platform

– Training materials and examples

– Bonus: the first release of Intel ISIM, the Intel Integrated Simulation Environment
with Modeling, including examples of performance, power, and thermal models

More on the Simics® Simulator

https://developer.intel.com/simics-simulator

*Other names and brands may be claimed as the property of others

https://developer.intel.com/simics-simulator

THE END

