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• An extended SystemC kernel for parallel simulation of TLM models
– Allocates SC_THREADs on several host CPUs aka workers executing in parallel

– Provides API to ensure atomic evaluation between wait statements

– Allows reproducible execution aka replay
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SCale 2.0 in a nutshell
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Parallel atomic process evaluation problem

Process 0 Process 1
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time

2 valid sequential 

evaluations yielding 

different results !
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time

Parallel simulation yielding to a 

non reproducible read due to 

process atomicity violation !

How can we
prevent that ?



• Occurs when no equivalent sequential schedule is found
• A sequential schedule always exhibit a total order between process RW, WR and WW access patterns
• Finding conflicts is equivalent to identifying process access dependency loop 

 build dependency graph
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Conflicts : Violation of atomic evaluation 
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Equivalent to sequential execution of:

So what do we need to prevent this ? 

No equivalent sequential schedule



• To identify if atomicity is violated we need knowledge on accesses
Pervasive access monitoring 
We need to no what and when (requires costly barriers)

• Not all accesses are problematic + cannot stop // on every access for perf.
We need to filter problematic accesses
Identify shared resources 

• In the general case: no mean to know shared resources before evaluation 
(e.g. CPU models memory access patterns)
Need dynamic analysis
Need rollback if shared resources identified to late
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How to ensure atomic process evaluation ?



1. Execute SC processes in parallel (using worker 
threads)

2. Monitor all memory accesses performed (and 
log them) 

3. Postpone processes trying to access a shared 
variable to a sequential evaluation phase to 
avoid atomicity violation

4. Determine if an address is shared thx to an 
FSM-based heuristic

– 3 & 4 ensure that no atomicity violation can occur 
during parallel evaluation 

5. Assert that no conflicts occurred after a 
SystemC evaluation phase by analyzing the log

– Rollback to a previous state if need be
– Restart the execution while ensuring dependencies 

are consistent from previous run
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SCale 2.0 Rationale
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• All memory access instrumented 
with mem_instr function:

• Suspends worker accessing any 
address identified as shared

• Builds worker dependency graph
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mem_instr example

// SC_THREAD simulating a CPU

void cpu_process(){

while(!terminate){

auto instr = get_next_instr();

if(is_mem_access(instr)){

mem_instr( // HERE

access_type(instr),

access_phy_addr(instr),

access_bytes(instr));

}

sim_instr(instr); //<- perform the 

access

}

}
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Address classification FSM

Upon denied access :  

Processes are yielded and will 

resume their execution in a 

sequential evaluation phase 
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Notice that :

no RW, WR or WW 

dependency can occur between 2 

processes during parallel evaluation

We call this ZDG

(Zero-dependency Guarantee)



• Instrumentation performance : 

– [ Instrumentation + memory access ] no longer need to be atomic 
• True as long as instrumentation comes first

• Removes costly barriers during instrumentation

– Memory accesses during the parallel phase can be recorded in parallel
• As they never depend on each other, their order is not important

• Conflict checking performance : 

– If no worker is unscheduled during the parallel phase, then no dependencies 
exist : the evaluation is valid without further analysis
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ZDG advantages during parallel phase



• FSM state is generally maintained from one evaluation to the next

– Needed as FSM state changes use costly CAS access

• Access pattern to resources can change during execution

– Need to forget previous classification to avoid over-pessimistic unscheduling

• Reset heuristic : when an unscheduling occured during last evaluation

• O(1) Generation-counter-based reset 
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Efficient FSM forgetting



• Upon completion of a sequential evaluation 
phase
– Start an asynchronous conflict check to assert no 

dependency loop exist
– Start immediately next evaluation phase
– Collect dependency analysis results and store 

observed valid process order for replay

• Periodic check-pointing of simulation state 
when valid

• When a conflict is found : 
– Rollback to previous valid state
– Replay up to problematic eval phase
– Execute problematic phase sequentially
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Conflicts & Rollback



• Need to have processes starting at the same cycles
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Ensuring good workload
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Cost of 

monitoring

Cost of check+rollback+resimulation

Performance vs determinism
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• 32 simulated processors 
using 32 workers

• QEMU Instruction Set 
Simulator
– load/store simulated in 

SystemC

• Quantum : 30,000 cy

• Baremetal applications

Gain of efficient 

monitoring

virtualization

debug

virtualization

& debug
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Linux performance
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• Always provides an 
acceleration

• Recording run: ×9 to ×13 
(32 workers)

• Replay run: ×11.5 to ×24 
(32 workers)

Note : Efficient Linux support requires the monitoring 

of priviledge levels in the modelled CPUs to enforce

sequential process evaluation

1 simulated core per worker

• Strong variations in gains depending
on application pattern

• Stronger gains upon replay
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• SCale provides means to ensure atomic evaluation and replay in parallel simulation

– Efficient monitoring that still halves the undeterministic execution speed

– Requires rollback support 

– Successfully provides acceleration if few resources are actually shared (up to x24 in replay)

• Monitoring of shared resources access is necessary

– Requires designer knowledge and annotations

• Future work 

– Provide source model analyzer to help designer annotate their models

– Study the impact in performance of more complex memory hierarchy with several levels of sharing

– Refine analysis of problematic access patterns in Linux guest 
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Conclusion


