
Ensuring reproducible parallel LT TLM models
simulation with SCale SystemC kernel

Tanguy SASSOLAS,
Université Paris-Saclay, CEA, List, F-91120, Palaiseau, France

Joint work with Gabriel BUSNOT, Nicolas VENTROUX and
Matthieu MOY

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by CEA to use this material in developing all future revisions and
editions of the resulting draft and approved Accellera Systems Initiative
SystemC standard, and in derivative works based on the standard.

© Accellera Systems Initiative 2

• An extended SystemC kernel for parallel simulation of TLM models
– Allocates SC_THREADs on several host CPUs aka workers executing in parallel

– Provides API to ensure atomic evaluation between wait statements

– Allows reproducible execution aka replay

© Accellera Systems Initiative

SCale 2.0 in a nutshell

Kernel

Proc 1 Proc 2 Proc 3 Kernel Proc 1 Proc 2 Proc 3 Kernel Proc 1Proc 3 Proc 2 Kernel

Proc 1

Proc 2

Proc 3

KernelProc 1

Proc 2

Proc 3

KernelProc 1

Proc 2

Proc 3

© Accellera Systems Initiative

Parallel atomic process evaluation problem

Process 0 Process 1

write (x, 1) write (x, 2) read (x) 2

Process 0Process 1

write (x, 1) write (x, 2)read (x) 0

time

time

2 valid sequential

evaluations yielding

different results !

Process 0

Process 1

write (x, 1) write (x, 2)

read (x) 1

time

Parallel simulation yielding to a

non reproducible read due to

process atomicity violation !

How can we
prevent that ?

• Occurs when no equivalent sequential schedule is found
• A sequential schedule always exhibit a total order between process RW, WR and WW access patterns
• Finding conflicts is equivalent to identifying process access dependency loop

 build dependency graph

© Accellera Systems Initiative

Conflicts : Violation of atomic evaluation

write(x)

read(x)

read(x)

write(y)

read(z)

read(y)P0

P1

P2

P3

read(y)

write(x)

Simulation time

P0 P1P3 P2

Equivalent to sequential execution of:

So what do we need to prevent this ?

No equivalent sequential schedule

• To identify if atomicity is violated we need knowledge on accesses
Pervasive access monitoring
We need to no what and when (requires costly barriers)

• Not all accesses are problematic + cannot stop // on every access for perf.
We need to filter problematic accesses
Identify shared resources

• In the general case: no mean to know shared resources before evaluation
(e.g. CPU models memory access patterns)
Need dynamic analysis
Need rollback if shared resources identified to late

© Accellera Systems Initiative

How to ensure atomic process evaluation ?

1. Execute SC processes in parallel (using worker
threads)

2. Monitor all memory accesses performed (and
log them)

3. Postpone processes trying to access a shared
variable to a sequential evaluation phase to
avoid atomicity violation

4. Determine if an address is shared thx to an
FSM-based heuristic

– 3 & 4 ensure that no atomicity violation can occur
during parallel evaluation

5. Assert that no conflicts occurred after a
SystemC evaluation phase by analyzing the log

– Rollback to a previous state if need be
– Restart the execution while ensuring dependencies

are consistent from previous run

© Accellera Systems Initiative

SCale 2.0 Rationale

kernel

W0

W1

W2

Evaluation phase

Parallel sequential

P0

Access to x

P1

P2

P1

Denied access to x

P2

Equivalent to:

P0 P1 P2

• All memory access instrumented
with mem_instr function:

• Suspends worker accessing any
address identified as shared

• Builds worker dependency graph

© Accellera Systems Initiative

mem_instr example

// SC_THREAD simulating a CPU

void cpu_process(){

while(!terminate){

auto instr = get_next_instr();

if(is_mem_access(instr)){

mem_instr(// HERE

access_type(instr),

access_phy_addr(instr),

access_bytes(instr));

}

sim_instr(instr); //<- perform the

access

}

}

© Accellera Systems Initiative

Address classification FSM

Upon denied access :

Processes are yielded and will

resume their execution in a

sequential evaluation phase

NO_ACCESS

Owner = ø

READ

_EXCLUSIVE

Owner = x

OWNED

Owner = x

READ

_SHARED

Owner = ø

R(x)W(x)

W(x)

R(x)̄

R(x)

R(x|x̄)

W(x|x̄)

W(x)̄

RW(x)

RW(x)̄

x: worker doing first access
x:̄ any other worker

denied access

reset

Notice that :

no RW, WR or WW

dependency can occur between 2

processes during parallel evaluation

We call this ZDG

(Zero-dependency Guarantee)

• Instrumentation performance :

– [Instrumentation + memory access] no longer need to be atomic
• True as long as instrumentation comes first

• Removes costly barriers during instrumentation

– Memory accesses during the parallel phase can be recorded in parallel
• As they never depend on each other, their order is not important

• Conflict checking performance :

– If no worker is unscheduled during the parallel phase, then no dependencies
exist : the evaluation is valid without further analysis

© Accellera Systems Initiative

ZDG advantages during parallel phase

• FSM state is generally maintained from one evaluation to the next

– Needed as FSM state changes use costly CAS access

• Access pattern to resources can change during execution

– Need to forget previous classification to avoid over-pessimistic unscheduling

• Reset heuristic : when an unscheduling occured during last evaluation

• O(1) Generation-counter-based reset

© Accellera Systems Initiative

Efficient FSM forgetting

• Upon completion of a sequential evaluation
phase
– Start an asynchronous conflict check to assert no

dependency loop exist
– Start immediately next evaluation phase
– Collect dependency analysis results and store

observed valid process order for replay

• Periodic check-pointing of simulation state
when valid

• When a conflict is found :
– Rollback to previous valid state
– Replay up to problematic eval phase
– Execute problematic phase sequentially

© Accellera Systems Initiative

Conflicts & Rollback

• Need to have processes starting at the same cycles

© Accellera Systems Initiative

Ensuring good workload

real
time

wait (110)

wait (100)

ISS 1

ISS 0

Kernel

time=100

wait (108)

time=0 time=110

wait (106)

time=208

real
time

wait (100)

wait (100)

ISS 1

ISS 0

Kernel

time=0 time=100

off=10

off=0 wait (100)

wait
(100)

time=200

off=8

off=16

 Sequential evaluation
(trashing timing effect)

 Parallel evaluation*

* with the use of

sc_global_quantum_sync()

Cost of

monitoring

Cost of check+rollback+resimulation

Performance vs determinism

© Accellera Systems Initiative

• 32 simulated processors
using 32 workers

• QEMU Instruction Set
Simulator
– load/store simulated in

SystemC

• Quantum : 30,000 cy

• Baremetal applications

Gain of efficient

monitoring

virtualization

debug

virtualization

& debug

17

Linux performance

© Accellera Systems Initiative

• Always provides an
acceleration

• Recording run: ×9 to ×13
(32 workers)

• Replay run: ×11.5 to ×24
(32 workers)

Note : Efficient Linux support requires the monitoring

of priviledge levels in the modelled CPUs to enforce

sequential process evaluation

1 simulated core per worker

• Strong variations in gains depending
on application pattern

• Stronger gains upon replay

18

• SCale provides means to ensure atomic evaluation and replay in parallel simulation

– Efficient monitoring that still halves the undeterministic execution speed

– Requires rollback support

– Successfully provides acceleration if few resources are actually shared (up to x24 in replay)

• Monitoring of shared resources access is necessary

– Requires designer knowledge and annotations

• Future work

– Provide source model analyzer to help designer annotate their models

– Study the impact in performance of more complex memory hierarchy with several levels of sharing

– Refine analysis of problematic access patterns in Linux guest

© Accellera Systems Initiative

Conclusion

