
Titolo presentazione

sottotitolo

Milano, XX mese 20XX

A fault-injection methodology for the

system-level reliability analysis of

computing systems modeled in SystemC

Antonio Miele – antonio.miele@polimi.it

Motivations

• Widespread adoption of complex computing systems

(e.g. multi-cores) in mission-/safety-critical applications

Images downloaded from google

Motivations

• Widespread adoption of complex computing systems

(e.g. multi-cores) in mission-/safety-critical applications

• Necessity to perform a reliability-aware design of

computing systems

Images downloaded from google

Motivations

• Widespread adoption of complex computing systems

(e.g. multi-cores) in mission-/safety-critical applications

• Necessity to perform a reliability-aware design of

computing systems

• Fault injection is the common tool used for reliability

analysis

Images downloaded from google

Motivations

Limitations in common practices for fault injection:

– Performing fault injection only in the late design stages

Working on the final chip
Images downloaded from google

Motivations

Limitations in common practices for fault injection:

– Performing fault injection only in the late design stages

– Analyzing manly final results

input ouput

Motivations

Limitations in common practices for fault injection:

– Performing fault injection only in the late design stages

– Analyzing manly final results

– When performing monitoring on internal memory elements,

analyzing raw traces

Goal of the work

A framework and a methodology for system-level fault-

injection-based reliability analysis in multi-cores specified

in SystemC/TLM

Key points:

• Support for an accurate definition of the fault campaign

• Capability to perform error monitoring at both architecture

and application level

• Customizable error analysis and classification approach

Reference system

• The hardware is

composed of one or

various processors

and HW modules

• The application is

organized into

tasks/functions

• Tasks are mapped on

the various units

ARM µP

transmission

module

MEM

image acquisition

RGB to GRAY

edge detection

edge overlapping

image transmission

C code

SystemC/TLM model

Background: ReSP

ReSP is a system-level simulation platform for multicores

• HW components
modeled in
SystemC/TLM

• Features a functional
model generator for
microprocessors

Background: ReSP

ReSP is a system-level simulation platform for multicores

• Python offers
introspection and
scripting capabilities:

– non-intrusive
visibility into the
components

– Run-time
composition and
management of
the specification

Fault injection and analysis tools in ReSP

µProc

memHW

BUS

SYSTEMC/TLM MODEL MONITORING
FACILITIES

FAULT
INJECTION
FACILITIES

processor

debugging

interface

probes on

TLM ports

delta-cycle

monitors

simulation

commands

saboteurs

µProc

Fault injection and analysis tools in ReSP

µProc

memHW

BUS

SYSTEMC/TLM MODEL MONITORING
FACILITIES

FAULT
INJECTION
FACILITIES

processor

debugging

interface

probes on

TLM ports

delta-cycle

monitors

simulation

commands

saboteurs

µProc

• The console stops the
simulation, injects the
fault and resumes the
simulation

Fault injection and analysis tools in ReSP

µProc

memHW

BUS

SYSTEMC/TLM MODEL MONITORING
FACILITIES

FAULT
INJECTION
FACILITIES

processor

debugging

interface

probes on

TLM ports

delta-cycle

monitors

simulation

commands

saboteurs

µProc

• Saboteurs can be
automatically inserted
in the specification

Fault injection and analysis tools in ReSP

µProc

memHW

BUS

SYSTEMC/TLM MODEL MONITORING
FACILITIES

FAULT
INJECTION
FACILITIES

processor

debugging

interface

probes on

TLM ports

delta-cycle

monitors

simulation

commands

saboteurs

µProc

• Processor models expose a configurable debugging interface
• Custom C++/Python functions can analyze the execution
• Application Binary Interface (ABI) can be exploited to

interpret raw data (in particular, on function calls/returns)

Fault injection and analysis tools in ReSP

µProc

memHW

BUS

SYSTEMC/TLM MODEL MONITORING
FACILITIES

FAULT
INJECTION
FACILITIES

processor

debugging

interface

probes on

TLM ports

delta-cycle

monitors

simulation

commands

saboteurs

µProc

• Probes (similar to saboteurs) can be used to analyze
transmitted data

• Custom Python functions can be used to monitor the internal
status of components (called every scheduler delta cycle)

System-level reliability analysis methodology

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

System-level reliability analysis methodology

• A binary analysis extracts a

static characterization of the

application

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

application

source code

function name
memory

addresses name type locationposition

source code

analysis

ABI-based

analysis

cross-compiling

and

executable

disassembling

...

params

System-level reliability analysis methodology

• A binary analysis extracts a

static characterization of the

application

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

application

source code

function name
memory

addresses name type locationposition

source code

analysis

ABI-based

analysis

cross-compiling

and

executable

disassembling

...

params

System-level reliability analysis methodology

• A semi-automated analysis of

components’ SystemC

specification

• Identifies injection

locations, and

• Supports the definition

of fault models

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

System-level reliability analysis methodology

• A fault-free run is performed

to characterize the golden

execution

• At architecture level:

• Collect relevant traces

• At application level:

Execution flow graph

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

System-level reliability analysis methodology

• A fault-free run is performed

to characterize the golden

execution

• At architecture level:

• At application level:

Execution flow graph

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

dead timeREG1

...

ENTER rgb2grey

AT 20760ns ON proc0

PARAMS:

 &5160024, &5154264, 80, 72

ENTER edgeDetector

AT 12224206ns ON proc0

PARAMS:

 &5154264, &5148504, 80, 72

EXIT egb2grey

AT 12223196ns ON proc0

PARAMS:

 &5160024, &5154264, 80, 72

RE-ENTER main

AT 12223374ns ON proc0

...

EXIT edgeDetector

AT 303853821ns ON proc0

PARAMS:

 &5154264, &5148504, 80, 72

Input

image

Input

image

Output

image

Input

image

Input

image

Output

image

Execution flow graph

System-level reliability analysis methodology

• Fault list is defined according

to

• The liveness analysis

on raw traces

• The function to corrupt

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

dead timeREG1

System-level reliability analysis methodology

• Definition of custom

architecture/application-level

monitoring and classification

functionalities in C++/Python

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

µProc

memHW

BUS

SYSTEMC/TLM MODEL MONITORING FACILITIES

processor

debugging

interface

probes on

TLM ports

delta-cycle

monitors

monitoring

and

classification

module

application-

level

interpreter

µProc

System-level reliability analysis methodology

• Definition of custom

architecture/application-level

monitoring and classification

functionalities in C++/Python

• Example of classifier for the

edge detection application

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

no-effect

critical data

error

exception/

timeout

small data

error

control-flow

error

System-level reliability analysis methodology

• Pretty standard execution flow

of the fault injection campaign

• “Reacher” results allow more

in-depth analysis

• Analysis results may provide

a feedback for a refinement of

the classification strategy

application

source code

architecture

specification

application static

analysis

architecture

static analysis

and fault model

definition

golden model

characterization

fault list

definition

definition of the monitoring

and classification strategy

execution of the fault

injection campaing

dependability report

results post-processing

P
R

E
L
IM

IN
A

R
Y

S
Y

S
T

E
M

C
H

A
R

A
C

T
E

R
IZ

A
T

IO
N

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N

S
E

T
-U

P

E
X

P
E

R
IM

E
N

T
A

L

C
A

M
P

A
IG

N
 A

N
D

R
E

S
U

L
T

S
 P

O
S

T
-

P
R

O
C

E
S

S
IN

G

A case study

• Reliability analysis of a

thread-level TMRed edge

detector running onto a

multicore

ARM µP

MEM
I/O

peripheral

ARM µP

rgb2grey rgb2greyrgb2grey

softwareVoter

read_bitmap

ARM µP

edgeDetection edgeDetectionedgeDetection

edgeOverlapping edgeOverlappingedgeOverlapping

write_bitmap

A case study

• First analysis performed on

the main results

• Classification:

• No effect

• Errors

• Exception/timeout

ARM µP

MEM
I/O

peripheral

ARM µP

rgb2grey rgb2greyrgb2grey

softwareVoter

read_bitmap

ARM µP

edgeDetection edgeDetectionedgeDetection

edgeOverlapping edgeOverlappingedgeOverlapping

write_bitmap

A case study

• Second more-accurate analysis

performed on the application-

level error propagation

• E.g.: propagation of data errors

ARM µP

MEM
I/O

peripheral

ARM µP

rgb2grey rgb2greyrgb2grey

softwareVoter

read_bitmap

ARM µP

edgeDetection edgeDetectionedgeDetection

edgeOverlapping edgeOverlappingedgeOverlapping

write_bitmap

Final states

Correct Fault Injection Image Error

Errors in one

Thread
Correct

Incorrect

Intermediate states

Exception

TMR CorrectionImage Size Error

Errors in 2

Threads

Image Address

Error

A case study

• Second more-accurate analysis

performed on the application-

level error propagation

• E.g.: propagation of PC errors

ARM µP

MEM
I/O

peripheral

ARM µP

rgb2grey rgb2greyrgb2grey

softwareVoter

read_bitmap

ARM µP

edgeDetection edgeDetectionedgeDetection

edgeOverlapping edgeOverlappingedgeOverlapping

write_bitmap

Correct
Fault Injection in

PC reg.

Jump forward

Errors in one

Thread

Correct

Incorrect

Exception/

Timeout

TMR Correction

Jump backward

Data error in one

thread

Jump out of

the thread’s

code section

Final statesIntermediate states

Conclusions

The various aspects of the methodology have been presented in

three scientific papers:

• A. Miele: A fault-injection methodology for the system-level

dependability analysis of multiprocessor embedded systems. In

Journal of Microprocessors and Microsystems, Elsevier, August 2014

• G. Beltrame, C. Bolchini, A. Miele: Multi-level Fault Modeling for

Transaction-level Specifications. In Proc. of (GLSVLSI), 2009

• C. Bolchini, A. Miele, D. Sciuto: Fault Models and Injection

Strategies in SystemC Specifications. In Proc. of IEEE Euromicro

DSD, 2008

Thank you…

… questions?

Contact: antonio.miele@polimi.it

mailto:antonio.miele@polimi.it

