
(Un)Suspend(able)

Dr Mark Burton

Engineer, Principal/Manager

Qualcomm France S.A.R.L.

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Qualcomm Incorporated to use this material in developing
all future revisions and editions of the resulting draft and approved
Accellera Systems Initiative SystemC standard, and in derivative works
based on the standard.

© Accellera Systems Initiative 2

Remember 2019?

• Syncromesh – it’s all about connections between things moving at
different speeds!

Plus ça change, plus c'est la même chose

Some sort of synchromesh thing!

We are talking about divide simulations

based on architectural features (like CPU’s

or Ethernet)

(not on a SystemC thread/method level)

Motivation 1:
Multiple Threads (and processes)

Time (Stops for nobody?)
• We have some choices:

– Don’t worry about time – let every simulation run at the speed it wants!
– Try to keep within a ‘Quantum’ (Introduced in TLM 2.0)

– SIM1 runs ‘faster’ than SIM2.
– At least once per quantum, the simulations are synchronized.
– SIM1 needs to ‘wait’ for SIM2.

T=10 T=20

T=10 T=20

T=20

T=20

T=30

T=30

Quantum 1 Quantum 2

S
Y

N
C

SIM1

SIM2

SUSPEND!

• We need a mechanism
to SUSPEND a simulation

while it waits for the other simulations catch up (and send an event to
continue).

• NB ‘suspend’ exists (!) for individual threads.

• We need to suspend all threads, so that SystemC has nothing more to
do.

SOME BACKGROUND…

SystemC 2.3.1…

© Accellera Systems Initiative 7

async_request_update

• async_request_update – allows an external ‘event’ to be inserted into a
running SystemC kernel in a thread safe way.

• Basis of any (all) communication between two simulations

• Problem : If a simulation runs out of events, then …
we better not stop!

(And if we have suspended all the threads, that can happen a lot!)

• And we need a single common semaphore

Compose-able solution for 2.3.2

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

Single shared semaphore.

Triggered from async_request_update

Compose-able solution for 2.3.2

Model 1
SystemC

Simulation
Model 2

OS Thread 1 OS Thread 2OS Thread 0

Single shared semaphore.

Triggered from async_request_update

This is the critical semaphore

we will use for suspend…

Details (Available in SystemC 2.3.2+)

• By default the semaphore is not used, SystemC exits normally.

• bool async_attach_suspending // proposed for IEEE 1666-202x

– Prim_channels can elect to attach to an external source of events (and therefore request the
presence of the semaphore)

• bool async_detach_suspending

– A prim_channel can elect to detach from an external source of events (and therefore remove the
request for the presence of the semaphore). If no prim_channels are attached to external events,
the semaphore plays no role in simulation.

• The semaphore is only checked (and potentially waited for) if no further events are available

– starvation, which is checked inside the simulation kernel anyway (using next_time returns 0), so
there is no additional cost here.

• The semaphore is released when async_request_update is called.

MULTI-THREADED
QUANTUM KEEPER

Building on TLM Quantums

12

TLM Quantum Keeper API

• The notion of “TLM Quantum” allows multiple
‘timezones’.

• The Quantum Keeper is responsible for maintaining
synchronisation between ‘timezones’.

13

TLM Master

QK

TLM world

Quantum timezone SystemC timezone

TLM Quantum Keeper

• Different ‘timezones’ could be in different threads !

• The Quantum Keeper is STILL responsible for
maintaining synchronisation between ‘timezones’.

14

TLM Master

QK

TLM word

Quantum timezone SystemC timezone

Underpinning services for QK

• Within SystemC the only ‘service’ the QK needs is to be able to ‘stop’
the timezone that has gone ahead, and allow the other timezone to
catch up.

• TLM defines that the ‘quantum timezone’ is ahead of ‘SystemC
timezone’

• The only ‘service’ needed is to call ‘wait’ in SystemC.

15

Multithread services for QK

• Between 2 threads, the SystemC timezone may run independently of
the Quantum timezone.

• Hence the QK needs a way to stop SystemC time, while the Quantum
time ‘catches up’.

• Reverse of normal SystemC QK.

16

SUSPEND

Building on central semaphore

© Accellera Systems Initiative 17

Suspend

• Add a kernel function

• suspend_all()

– Request to suspend all threads (and pending events)

– All threads become un-schedulable

– (The simulation will run out of schedulable tasks instantly, and fall into the
‘semaphore’).

• Unsuspend()

– Request to re-instate all threads (and pending events).

– You can call unsuspend from a async_update method as you will not be in the
semaphore at that point.

© Accellera Systems Initiative 18

Unsuspendable/Suspendable

• A thread may mark itself as ‘unsuspendable’.

• This only effects the ‘global’ suspend_all mechanism.

• For save/restore, all b_transports that are non-re-entrant will have to be
non-suspendable.

• For thread sync, all b_transports being processed on behalf of an
external simulation should be marked as non-suspendable.

© Accellera Systems Initiative 19

new API

• The New API includes:

void sc_suspend_all()

void sc_unsuspend_all()

void sc_unsuspendable()

void sc_suspendable()

• It also includes changes to the state and ways to discover if the
simulator is suspended using

void sc_(un)register_stage_callback(const sc_stage_callback_if&, int);
void sc_unregister_stage_callback(const sc_stage_callback_if&, int);

© Accellera Systems Initiative 20

suspend_all/unsuspend_all :

• Requests the kernel to ‘atomically suspend’ all processes (using the same semantics

as the thread suspend() call). This is atomic in that the kernel will only suspend all the

processes together, such that they can be suspended and unsuspended without any

side effects.

– Calling suspend_all(), and subsiquently calling unsuspend_all() will have no effect on the suspended

status of an individual thread.

• A process may call suspend_all() followed by unsuspend_all, the calls should be

‘paired’, (multiple calls to either suspend_all() or unsuspend_all() will be ignored).

• Outside of the context of a process, it is the programmers responsibility to ensure that

the calls are paired.

• As a consequence, multiple calls to suspend_all() may be made (within separate

processes, or from within sc_main). So long as there have been more calls to

suspend_all() than to unsuspend_all(), the kernel will suspend all processes.

© Accellera Systems Initiative 21

unsuspendable()/suspendable()

• This pair of functions provides an ‘opt-out’ for specific process to

the suspend_all. The consequence is that if there is a process

that has opted out, the kernel will not be able to suspend_all (as it

would no longer be atomic).

• These functions can only be called from within a process.

• A process should only call suspendable/unsuspendable in pairs

(multiple calls to either will be ignored).

© Accellera Systems Initiative 22

SYSTEMC’S OF SYSTEMC’S !!!

Connecting it all together.

Simulation System 2

Simulation System 1

SystemCs of SystemCs

© Accellera Systems Initiative 24

CPUs

Uart I2C

System
Memory

Other CPU

Local
Memory

2 independent

systems in their own

right

Joined to form a

system of systems

Uart I2C

SystemC RPC

• Wouldn’t it be nice …

(Nothing new…)

© Accellera Systems Initiative 25

SystemC
sc_main…

SystemC
sc_main…

tcp

But now with “(un)suspend”

© Accellera Systems Initiative 26

SystemC
sc_main…

SystemC
sc_main…

tcp 1. Carry TLM and sc_signal interface over TCP RPC calls

2. Use attach/detach and async events based on async_notify

3. (Optionally) use shared memory for DMI calls

4. Provide ‘synchronization policies’ between SystemC’s using

(un)suspend

5. N-N mapping of TLM sockets and Signal’s to facilitate wiring.

6. CCI database is ‘shared’

7. SystemC code is executed on the SystemC thread(*)

* Mostly – see later

RPC thread(s)SystemC thread

(remote) SystemC thread

Running on SystemC

© Accellera Systems Initiative 27

b_transport

RPC b_transport
async_request_update

RPC -> b_transport

RPC thread(s)RPC thread(s) (remote) SystemC thread

LOOPS !!!

© Accellera Systems Initiative 28

b_transport

RPC b_transport
async_request_update

RPC -> b_transport

b_transport

async_request_update

RPC b_transport

DEADLOCK

Loop Rules

• b_transport loops wont work – find a better place to
divide your system!

• But : What about a b_transport that causes a DMI
invalidate !!!

• Conclusion : DMI should be ‘thread safe’ !

• Allow get_dmi_ptr and invalidate_dmi to run on
any thread!

© Accellera Systems Initiative 29

Thread safe DMI ?

• The intention of the DMI interface is that it does not pass via
notifications etc – so it should be possible to make thread safe.

• This would require ‘work’ on peoples DMI mechanisms.

• (at the very minimum, if a b_transport causes a DMI invalidate, then the
invalidate must be executed on a separate thread otherwise there is a
deadlock).

• Of course, the DMI interface could use async_events to trigger behavior
in SystemC if required.

© Accellera Systems Initiative 30

RPC thread(s) (remote) SystemC thread

DMI Identical call sequence to TLM-2.0

© Accellera Systems Initiative 31

b_transport

RPC b_transport
async_request_update

RPC -> b_transport

get_dmi_ptr

RPC get_dmi_ptr

POSIX SHARED MEMORY

+DMI hint

get_dmi_ptr

+ MMAP ID

tlm extension

+ MMID

Memory model must

provide a (system)

MMAP ID
DMI requester

receives DMI ptr to

memory as normal.

DMI hint

recieved

Synchronisation

• TLM 2.0 Rule : Delta time can’t be ‘negative’

• The ‘Initiator’ simulation time has to be behind of the ‘target’. (so that
the ‘delta’ time is positive)

• While one simulation is the initiator, time will be synchronized (with
various ‘quantum’ policies).

• If the initiator swaps, then a synchronization would be forced.

(WIP)

© Accellera Systems Initiative 32

CCI

• CCI parameter values may be set by one simulator and need to be used
by the other.

• The RPC link simply needs to provide a way to set values (call-backs,
aliases, etc are all tricky over RPC!)

• Special care is needed to translate the parameter names between the
simulations.

• Parameters passed to the other simulation should be marked as
consumed.

© Accellera Systems Initiative 33

FAQ

• SystemC + ‘Something else’ – OF COURSE

– The RPC protocol is simple

• Between hosts (No shared memory) - OF COURSE

– Just don’t provide the DMI hint

• Handle other socket types – Fill your boots

– This could be easily done, (come and help!)

• Handle nb_transport – Should be easy

– Would be a natural fit ! (come and help!)

© Accellera Systems Initiative 34

Show Me The Code !

• Current implementation:

• PassRPC class has N TLM ports and M Signal ports (bi directional and
zero-or-more-bound)

• ShmemIDExtension holds the MMAP ID

• Memory handles MMAP (with block based late allocation).

• Makes use of a ‘multithread quantum keeper’

– Which has a number of policies.

• Donation will be made to Accellera SCP.

© Accellera Systems Initiative 35

