
Page ▪ 1

Tracing in TLM based SystemC models

Rocco Jonack, Eyck Jentzsch
MINRES Technologies GmbH

Page ▪ 2

Presentation Copyright Permission

– A non-exclusive, irrevocable, royalty-free copyright
permission is granted by MINRES GmbH to use this
material in developing all future revisions and editions of
the resulting draft and approved Accellera Systems
Initiative SystemC standard, and in derivative works based
on the standard.

Page ▪ 3

Company

▪ MINRES is an enabling company, dedicated to providing
the expertise and solutions required for improving
development productivity:
▪ Methodology services + productivity IP
▪ Design consulting services & value added application

engineering
▪ ISO26262 compliant RISC-V RTL IP
▪ Cloud based hybrid simulation solution (RTL/VP)

▪ MINRES Technologies GmbH is a privately-held, remote-
first startup based in Germany

MINRES Technologies GmbH Confidential

Page ▪ 4

INTRODUCTION

Page ▪ 5

Purpose of traces

• Traces are commonly well understood
– Accepted mechanism for debugging, performance analysis

and documentation

• Traces are very widely used in HW design and
verification
– All HDL simulators support tracing implicitly

• SystemC contains default implementation for VCD
tracing

Page ▪ 6

Usage of traces

• Tracing signal type elements is straight forward
– Bool, integer, bit constraint types and structs of those base types
– VCD is the default choice, but many compressed formats exist
– Open-source availability is important in many cases

• Tracing more complex elements like transactions is cumbersome in VCD
– Transactions have many elements and time points
– Phases as basic elements of transactions can overlap

• Why transaction tracing
– Well formed format for transactions

• Forms definition of data record with different timing points on a stream
• Information on a stream can vary over time

– Ties into TLM2 modeling concepts
• Extension mechanisms can be transformed into trace structures

– Can augment VCD

Page ▪ 7

TRACING IN SCC - USE MODEL

Page ▪ 8

Module sysc: waveform tracing

• SCC contains tracer module to automatically trace
signals, ports, and variables

• Improved waveform tracing implementation(s)
– Push waveform tracing implementation

– Supports VCD

– Supports FST
• Compact format coming with gtkwave

– Can be visualized using gtkwave, Impulse, or SCViewer

Page ▪ 9

Module sysc: VCD push versus poll

• Default implementation polls each traced signal for
changes

– This is usually called pull approach

• SCC comes with an implementation which registers a
method to each signal or port to be notified when
changed

– This we call push approach

Page ▪ 10

Module sysc: transaction recording

• Two implementations
– Based on SCV
– Based on Lightweight transaction recording (LWTR)

• Both support various backend implementations
– Text format based on SCV reference implementation
– Fast Transaction recording (FTR) a compact binary representation with

compression

• Can be visualized using SCViewer or Impulse
• Various reference implementations read FTR format for

further analysis

Page ▪ 11

Transaction recorder

• Unit with 1 input and 1 output port
– TLM2 no extensions; AXI, ACE and CHI with

extensions

• Optional transaction tracing
– Tracing is enabled if file handle was opened

before construction

– Low runtime overhead

• Can be integrated in existing systems
– Integrator to include components

– Top level must support file handle opening

Coherent interconnect

Memory NoC

DRAM

channel
Memory

targets

DRAM

channel

…

Accelerators … System

Components

CPU cluster System NoCs

Page ▪ 12

Tracing setup

• Tracer automatically
traverses object hierarchy

• Tracing is controlled by
CCI parameters

• Opening database
replaces default
implementation
– Registering values

equivalent to default
implementation

#include <scc/configurable_tracer.h>

#include <scc/configurer.h>

int sc_main(int argc, char* argv[]) {

 // simple configuration

 scc::configurer cfg(“system.yaml”);

 scc::configurable_tracer trace("tgc_tb_rtl", scc::tracer::FTR, true, true);

 ...

 sc_core::sc_start();

}

Page ▪ 13

Tracing control

• Configurable tracer
can control tracing by
hierarchy based on CCI
parameters

• Optional argument to
database constructor
can control time
window of tracing

#include <scc.h>

int sc_main(int argc, char* argv[]) {

…
 sc_core::sc_trace_file* trc = scc::scc_create_vcd_trace_file(“my_vcd",

 []() -> bool {

 // start tracing after 2us

 return sc_core::sc_time_stamp() >= 2_us;

 }

);

…

 sc_core::sc_start();

}

Page ▪ 14

TRACING - VISUALIZATION

Page ▪ 15

Trace visualization I

• SCViewer available
on github as open-
source

• Reads transaction
and signal traces

• Contains
waveform, table,
details and
hierarchy view

https://github.com/Minres/SCViewer/releases

Page ▪ 16

Trace visualization II

• Impulse as open
source tool for
visualization

• Plugin to eclipse
• Variety of input

formats
• Commercial

usage and
integration
based on
licensing

Page ▪ 17

Traces visualization - gtkwave

• gtkwave is the default choice open-source tool
for signal trace viewing

• Reads fast and efficiently signal traces

– Specifically fst format

– Provides utilities to convert from and to VCD

Page ▪ 18

Traces visualization - Verdi

• Verdi is a common tool in the marketplace

• Proprietary transaction format
– Converter from open-source transaction format to

proprietary format through FSDB API

• Alignment with RTL

 analysis

Page ▪ 19

Transaction trace analysis

• Parsing and postprocessing of transaction traces
– Well defined interfaces allow reliable post processing
– Split transaction recording from analysis step

• Post processing without simulation impact
• Partial transaction analysis
• Compression handling
• Flexible output format

• Python script implementation
– Example handles AXI, ACE and CHI
– Outputs can be transaction journal, performance

summary and STL per socket

Page ▪ 20

Trace analysis visualization

• Trace analysis output
can be used by open-
source visualization
tools like dash

• Python libraries allow
simple analysis and
even simulation
control interfaces

Page ▪ 21

TRACING - SUMMARY

Page ▪ 22

Results of signal trace implementations

SystemC VCD

sc_trace

SCC VCD no

duplication SCC VCD push FST

simulation time (s) 23,01 14,18 61,63 % 11,86 51,54 % 13,57 58,97 %

file size (Mbytes) 561,15 206,51 36,80 % 206,92 36,87 % 5,77 1,03 %

compressed file

size (Mbytes) 164,33 36,20 22,03 % 38,36 23,34 %

• Comparing in columns signal traces default, without
signal duplication, push interface and FST
implementation

• comparing in rows impact on simulation time, size of
generated file and lz4 compression (where applicable)

Page ▪ 23

Results of transaction trace
implementations

txlog txftr ctxftr

simulation time (s) 163,82 121,16 73,96 % 125,00 76,31 %

file size (Mbytes) 496,89 60,06 12,09 % 8,02 1,61 %

SCV TX read time (s) 42,70 12,71 29,77 % 13,51 31,64 %

SCV TX overall (s) 49,93 18,89 37,83 % 20,35 40,76 %

• Comparing in columns transaction traces as text (txlog),
binary enconded (txftr) and compressed binary encoded
(cxftr)

• comparing in rows impact on simulation time, size of
generated file and runtime of postprocessing

Page ▪ 24

Wishlist

• Alignment around transaction recording format

• Better VCD implementation as part of SystemC
standard

• Alignment with formats used by RTL simulators

Page ▪ 25

BACKUP

	Slide 1: Tracing in TLM based SystemC models
	Slide 2: Presentation Copyright Permission
	Slide 3: Company
	Slide 4: Introduction
	Slide 5: Purpose of traces
	Slide 6: Usage of traces
	Slide 7: Tracing in SCC - USE model
	Slide 8: Module sysc: waveform tracing
	Slide 9: Module sysc: VCD push versus poll
	Slide 10: Module sysc: transaction recording
	Slide 11: Transaction recorder
	Slide 12: Tracing setup
	Slide 13: Tracing control
	Slide 14: Tracing - Visualization
	Slide 15: Trace visualization I
	Slide 16: Trace visualization II
	Slide 17: Traces visualization - gtkwave
	Slide 18: Traces visualization - Verdi
	Slide 19: Transaction trace analysis
	Slide 20: Trace analysis visualization
	Slide 21: Tracing - SUMMARY
	Slide 22: Results of signal trace implementations
	Slide 23: Results of transaction trace implementations
	Slide 24: Wishlist
	Slide 25: BACKUP

