
Accellera Federated Simulation Standard (FSS)
Proposed Working Group

© Accellera Systems Initiative 1

Mark Burton

2

3

Groom Bride

4

SMP2 TLM2

Problem Statement
Different simulation approaches and standards…

Semi’s

SystemC
TLM
IP-XACT

Avionics

VISTAS /
VHTNG

Space

SMP2

Automotive

openADx
openDRIVE
openSCENARIO
openCRG
openPASS

Mechatronics

FMI / FMU

How to bring these industries and
simulation approaches together?

5

Context: Cross-Industry Collaboration Initiative

• A “Core Team” has been established in 2019 to exchange knowledge and
best-practices

– Inventorize existing simulation standards, its usage and coverage

– Understand requirements, potential overlaps, and points of interaction

• Foster and initiate actions to improve and co-ordinate standards
development and integration of simulation technologies

– Collaborative action to make standards evolve according to our needs
(e.g., interoperability, scalability, …)

– Explore cross-industry collaboration between Standards Developing Organizations
and Consortia supporting open innovation and collaboration

Core Team members*

Airbus
Aptiv
AVL

Bosch
Collins Aerospace
IRT Saint-Exupery

NXP
Qualcomm
Shokubai
Spacebel

6

Federated Simulation Standard – Proposed WG

• Charter
– Cross-industry collaboration to improve the interoperability of product and environment

simulation using existing and new open standards

• Scope
– Develop a standard (API) and open infrastructure to enable cross-industry interoperability of

simulation frameworks

• Purpose the Proposed Working Group
– Identify industry interest and requirements for a standard / API covering addressing

interoperability of simulation

• Leadership
– Chair: Martin Barnasconi (NXP), vice-chair: Mark Burton (Qualcomm)

• Envisioned Stakeholders
– Companies active in different industry segments (e.g., Semiconductors, Automotive,

Avionics, Space, …)
– Companies active in different stages of the value chain (Tier2, Tier1, OEM)

7

FSS: Enabling cross-industry interoperability of
simulation frameworks

• Approach: Leveraging and connecting
existing standards and industry formats
– Not re-invent wheels

• Introduce standardized interfaces
– Enabling interoperability between simulation

frameworks

• Targeting a scalable simulation and
modeling ecosystem
– Support models and simulation domains used at

different levels of the ‘OSI stack’

8

Interface

Interface

FMI/FMU

Model

SystemC TLM

Model/Simulation

ED-247 (VISTAS)

Simulation

SMP2

Model

The problem

9

I2C

SPI
Ethernet

CAN UART

GPIO

But our problem is deeper….

For some the problem is “only” the serial interfaces

How do we connect Engine controller A to device B.

How do I re-use models

How do I connect models of one type to another

How do I even connect models of the ‘same’ type!

And How do we deal with HW/SW ‘connections’…

10

DATA Exchange

(easy?)

TIME Sync

(HARD?)

Time (waits for no man)

11

Every simulation environment has a different

notion of “time”

Many have multiple “times” :

(Wall clock, simulation time, local time,

quantum time . . .)

Interactions

Hardware in the loop

High level “models”

Virtual Platforms

Abstracting data is not trivial…

But…

Each have a notion of ‘time’

Ensuring that each is “happy”

IS hard !

Software in the loop

SystemC

SystemC VP

13

QEMU/CPU ‘I2C’ controller

‘I2C’ device

Data : Not Rocket Science

Time …..?

Mixed VP

14

When Synchronisation becomes n-way:

- central controllers

- “global” notions of time

But when the simulations beginning combined do not share these?

- Adapters/shims are only possible when the ‘concepts’ of time match

- If time is variously ‘abstracted’ things are more tricky. . .

Federated Simulation Standard – Ideas (1)
• Main idea is to introduce a ‘message passing’

and ‘adapters’ approach to bring different
models / simulation domains together

• Approach should support system models and
simulation domains used at different levels of
the ‘OSI stack’

• Assess available standards and their capabilities
to enable interoperability

• Aim is not to replace existing standards, but to
standardise how they can be adapted to work
with each other

15

Application

Middleware

O/S

Firmware

Hardware

Environment

Middleware

O/S

Firmware

Hardware

Adap-
ter

Adap-
ter Model /

Simulator B

M
o

d
e

l
 /

 S
im

u
la

to
r
A

Message passing

semantics

Example: S/W and H/W

16

S/W expects timer interupts at the end of each period, but….

A Virtual Platform may not know that time it is !!! Interrupts might fire too quickly….

HW/SW Interaction

• Synchronous Application can execute in zero
simulation time. Time is an intrinsic artifact of
event types and loops.

• Asynchronous Application polls for events every
Δt

• RTOS is formed by combining Asynchronous and
Synchronous

• Audio, Video, HMI follows Synchronous model

• Synchronous resembles Software in the loop

• Asynchronous resembles Hardware in the loop

• Assess available standards and their capabilities
to enable interoperability

17

Synchronous
Application

Event A

Event B

Interrupt

Environment

Event A

Event B

Asynchronous
Application

Δt

Environment
Δt

HW/SW Interaction

• Simulation needs awareness that certain events
must be completed before or after
corresponding Milestone Marker

• Solutions to this exist… but
– “We’re not talking” to each other.

– Not universally adopted

– Not connected

18

Synchronous
Application

Interrupt

Event B

Event A

Environment

Event B

Event A

Environment Δt

Asynchronous
Application Δt

Simulation Time

Wall Clock

Quantum time

Milestone-
Markers

Milestone-
Markers

Exit to real world. Connect to real HW

If simulation Time <= Wall Clock

Don’t throw the baby out with the bathwater!

• Lots of standards exist

• All have good/bad points

• Plan is to link/reuse

• NOT replace

19

How will we work?

20

SystemC

IEEE 1666-2011

TLM

SystemC

IEEE 1666-2023

FMI2

FMI3

dcp

ED247/ VISTAS

VHTNG

ED247 Revb (DDS)

HLA / IEEE1516SystemC

HLA on DDS

HLA on Zenoh

Demonstrators

Group1

Group2

Group3

How does this this relate to SystemC?

• What parts are there?

• Are there enough?

21

Sync primatives : Do we have enough?
Primative Description

sc_suspend_all()
sc_unsuspend_all()
sc_suspendable()
sc_unsuspendable()

Suspend all systemc threads if none are unsuspendable.
Unsuspend.
Mark suspendable.
Mark unsuspendable, such that systemc can not suspend all.

class async_event Wrap “request_update” (the only thread safe method in SystemC) in a
convenient sc_core::sc_event type.
async_attach_suspending/async_detach_suspending to ensure SystemC does
not quit on event starvation.

NB “request_update” events are executed by the kernel even if the kernel is
suspended.

Class RunOnSysC Convenience layer to sckedule a lambda expression to be run by the SystemC
thread. (NB this will run on the next delta cycle). Provides:
bool run_on_sysc(std::function<void()> job_entry, bool wait = true)

realtimelimiter A module which prevents time from advancing beyond realtime.

“Cloud TLM”?

• Basis of any “external” interface: (un)suspend interface

23

Wait till we get event

Process event

Send result

Requires

sc (un) suspend

Code available

github:quic/qbox

Bidirectional serial socket
• Simple set of standard TLM sockets, can cover most serial interfaces

• Not ‘standard’ just one way of modelling interfaces

24

▪ SystemC models of
UARTS, NICs, I2C. . . .

• STDIO, Socket, File, …

Control: can receive N items

Data

enqueue’d

Data forwarded

• 4x tlm 2.0 GP interfaces.

• Not all fields used, but protocol used for compatibility.

• (May be sent over RPC remote)

• Convenience layer provided to enqueue data

Code available

github:quic/qbox

RPC tlm

25

▪ ‘n’ inputs/outputs, etc..

▪ Relies on (un)suspend interface, and ‘asyncronous’ events.

▪ Pass TLM-2.0 interface over RPC

▪ CCI parameter database is shared (names de-mangled)

RPC

Code available

github:quic/qbox

Sync policies

• TLM 2.0
ONLY DETERMINISTIC MODE

• ‘parallel’ TLM 2.0
With a fixed Quantum.

T=100T=0

T=0 T=100

T=100T=0

Code available

github:quic/qbox

Sync policies

• ‘Windowed’ quantum

• Unconstrained

T=100T=0

T=150

Each b_transport indicates a time, which can

be used to allow SystemC to advance.

T=100T=0

T=50

Code available

github:quic/qbox

Conclusion
• Lets get married

• Lets start the conversation

• Lets work on bringing standards
together.

28

