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Introduction

• Took over CCI chair position from Ola Dahl in 2022

• Working at MachineWare on Virtual Platforms

– Previously at Synopsys, GreenSocs and RWTH Aachen 

• Also active in

– SystemC Language Working Group

– SystemC Common Practices Subgroup

– Federated Simulation Standard PWG
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Agenda

• Introduction to CCI 

• CCI Basics

– CCI Memory Inspection API

– State of CCI

• Open discussion

• Wrap-Up
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CCI Roadmap
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SystemC Configuration, Control, Inspection

• Motivation
– VPs are combination of models (black boxes)
– Users want to configure, control and inspect the VP and its models

• Goal
– Provide standardized means for VP/model configuration, control and inspection

• Addressed in CCI 1.0
– Configuration: introduce parameters and means to use them

• Not addressed so far
– Control, Inspection
– Proposal for memory inspection from NXP under review
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1.0.1 Release

• 1.0.1 mainly bug-fix and infrastructure release
• Added CMake build

– Contributed by Mark Burton. Thank you!

• Added CI infrastructure for testing different OSs and SystemC versions
– Implemented using GitHub Actions
– Testing every commit, MR, …
– Contributed by Nils Bosbach. Thank you!

• Added release automation on GitHub
– Contributed by Nils Bosbach. Thank you again!
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Configuration: Idea (simplified)

• Parameters get value from Broker

• Parameter owner specifies default

• Broker overrides default

• User sets value in Broker

• Broker is singleton

• Parameter identified by name
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Configuration: Use Case

• Parametrization of sc_modules

• Set parameters of any (black box) 

SystemC model from any vendor

• Combine models into user 

configurable VP
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Configuration Inventory Continued

- Inventory implemented in POC for CCI 1.0

- Parameter: Carries a default value, may be overwritten by user through broker, 

may have read/write callbacks

- Broker, broker manager: manage parameter values, callbacks for parameter 

creation/destruction, broker hierarchies possible

- Originator: track origin of parameter values

- cci_value: variant type for storing parameter values, may be provided in JSON, 
some utilities exist like list, map
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CCI Roadmap
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CCI Memory Inspection: Idea

• Proposal by NXP, under review

• Allow user to peek/poke/register 

callbacks any memory from 

(black-box) models

• Model memories register to portal

• User utilizes portal for memory 

inspection
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CCI Memory Inspection: Status

• Ongoing review process, feedback encouraged

• Discussion about

– Should the API support memory hierarchies

– What (if any) callbacks should be supported

– Can we reuse existing CCI components (broker, …)

– Exposed memory endianness
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The State of CCI
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What is the vision?

• Configure, control and inspect any VP/model the same way

• Combine any (black-box) SystemC models into a configurable, 

controllable, inspectable VP

• Reuse configuration files, scripting interfaces, inspection tools, …

• Standardized, open interfaces

– POCs exist in the wild: GS libraries, SCC, VCML, …

– Can’t be that hard ;-)
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What do we have?

• CCI 1.0 standard: Parameters, Brokers, etc.

• A CCI 1.0.1 Proof-Of-Concept implementation

– POC C++ library and tests

– Continuous integration testing with major SystemC releases and OSs

• An agreement that the need exists (or does it?)

• An completely open collaboration platform: Public GitHub repository

• Motivated WG members
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What do we not have?

• A widely adopted standard for Configuration

• A standard for Control and Inspection

– Control: Session, breakpoints

– Inspection: Memory, register inspection, 

watchpoints 

• Enough human resources
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(Future) SystemC CCI Library

Application
Written by the End User

SystemC Core Language
IEEE Std. 1666-2023

Programming Language C++
ISO/IEC Std. 14882-2017

variant type if inspection if lookup if callback if

memory if checkpoint if control ifparameter if

broker if portal if originator if debug if

. . 

.

. . 

.

. . 

.

Foundational 
elements

Revisiting / refactoring the CCI library architecture?

• Current CCI library geared towards 
configuration (parameters, values, …)

• Standardization of register/memory 
inspection API revealed that we need a 
similar (but slightly different) API

• Challenge: the more CCI extensions we 
introduce, the higher the risk of 
duplication of functionality and APIs

• We need to make a strategic decision:
– Each CCI domain gets its own unique (user/tool) 

API and corresponding (base) class libraries and 
features

– Each CCI domain gets its own unique (user/tool) 
API but shall leverage the same underlying 
foundational elements

… and which of these foundational elements 
should end-up in a future SystemC standard?

User/tool 
API

“Middle-
layer”



Discussion
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