
SystemC CCI
What’s new? What’s next?

SystemC CCI WG

© Accellera Systems Initiative 1



Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is 
granted by MachineWare GmbH to use this material in developing all 
future revisions and editions of the resulting draft and approved 
Accellera Systems Initiative SystemC CCI standard, and in derivative 
works based on the standard.

© Accellera Systems Initiative 2



Introduction

• Took over CCI chair position from Ola Dahl in 2022

• Working at MachineWare on Virtual Platforms

– Previously at Synopsys, GreenSocs and RWTH Aachen 

• Also active in

– SystemC Language Working Group

– SystemC Common Practices Subgroup

– Federated Simulation Standard PWG

3



Agenda

• Introduction to CCI 

• CCI Basics

– CCI Memory Inspection API

– State of CCI

• Open discussion

• Wrap-Up

4



CCI Roadmap

5

SystemC 
Debug

Parameters

Configuration

Registers Probes Save/Restore Commands

Analysis Authoring
Checkpointing

/
Reverse sim.

State
(registers,...)

Built-in
debug 

features

Data
(performance, 

power,...)

Tool Use Cases

Standard 
Interfaces

Model 
Information

CCI 1.0



SystemC Configuration, Control, Inspection

• Motivation
– VPs are combination of models (black boxes)
– Users want to configure, control and inspect the VP and its models

• Goal
– Provide standardized means for VP/model configuration, control and inspection

• Addressed in CCI 1.0
– Configuration: introduce parameters and means to use them

• Not addressed so far
– Control, Inspection
– Proposal for memory inspection from NXP under review

6



1.0.1 Release

• 1.0.1 mainly bug-fix and infrastructure release
• Added CMake build

– Contributed by Mark Burton. Thank you!

• Added CI infrastructure for testing different OSs and SystemC versions
– Implemented using GitHub Actions
– Testing every commit, MR, …
– Contributed by Nils Bosbach. Thank you!

• Added release automation on GitHub
– Contributed by Nils Bosbach. Thank you again!

7



Configuration: Idea (simplified)

• Parameters get value from Broker

• Parameter owner specifies default

• Broker overrides default

• User sets value in Broker

• Broker is singleton

• Parameter identified by name

8

User

Broker

Owner (sc_module)

cci_param

cci_param

cci_param

set value

re
gi

st
er

, i
n

it
ia

liz
e



Configuration: Use Case

• Parametrization of sc_modules

• Set parameters of any (black box) 

SystemC model from any vendor

• Combine models into user 

configurable VP

9

Virtual Platform

Interconnect

Model 
Vendor A

cci_param

Model 
Vendor B

cci_param

Model 
Vendor C

cci_param

Model 
Vendor D

cci_param

Your
CCI

Broker



Configuration Inventory Continued

- Inventory implemented in POC for CCI 1.0

- Parameter: Carries a default value, may be overwritten by user through broker, 

may have read/write callbacks

- Broker, broker manager: manage parameter values, callbacks for parameter 

creation/destruction, broker hierarchies possible

- Originator: track origin of parameter values

- cci_value: variant type for storing parameter values, may be provided in JSON, 
some utilities exist like list, map

10



CCI Roadmap

11

SystemC 
Debug

Parameters

Configuration

Registers Probes Save/Restore Commands

Analysis Authoring
Checkpointing

/
Reverse sim.

State
(registers,...)

Built-in
debug 

features

Data
(performance, 

power,...)

Tool Use Cases

Standard 
Interfaces

Model 
Information

CCI 1.0



CCI Memory Inspection: Idea

• Proposal by NXP, under review

• Allow user to peek/poke/register 

callbacks any memory from 

(black-box) models

• Model memories register to portal

• User utilizes portal for memory 

inspection

12

Model

Top

Comp0 Comp1 Comp2

mem0 mem1 mem2

Memory
Portal User

register

inspect



CCI Memory Inspection: Status

• Ongoing review process, feedback encouraged

• Discussion about

– Should the API support memory hierarchies

– What (if any) callbacks should be supported

– Can we reuse existing CCI components (broker, …)

– Exposed memory endianness

13



The State of CCI

14



What is the vision?

• Configure, control and inspect any VP/model the same way

• Combine any (black-box) SystemC models into a configurable, 

controllable, inspectable VP

• Reuse configuration files, scripting interfaces, inspection tools, …

• Standardized, open interfaces

– POCs exist in the wild: GS libraries, SCC, VCML, …

– Can’t be that hard ;-)

15



What do we have?

• CCI 1.0 standard: Parameters, Brokers, etc.

• A CCI 1.0.1 Proof-Of-Concept implementation

– POC C++ library and tests

– Continuous integration testing with major SystemC releases and OSs

• An agreement that the need exists (or does it?)

• An completely open collaboration platform: Public GitHub repository

• Motivated WG members

16



What do we not have?

• A widely adopted standard for Configuration

• A standard for Control and Inspection

– Control: Session, breakpoints

– Inspection: Memory, register inspection, 

watchpoints 

• Enough human resources

17



(Future) SystemC CCI Library

Application
Written by the End User

SystemC Core Language
IEEE Std. 1666-2023

Programming Language C++
ISO/IEC Std. 14882-2017

variant type if inspection if lookup if callback if

memory if checkpoint if control ifparameter if

broker if portal if originator if debug if

. . 

.

. . 

.

. . 

.

Foundational 
elements

Revisiting / refactoring the CCI library architecture?

• Current CCI library geared towards 
configuration (parameters, values, …)

• Standardization of register/memory 
inspection API revealed that we need a 
similar (but slightly different) API

• Challenge: the more CCI extensions we 
introduce, the higher the risk of 
duplication of functionality and APIs

• We need to make a strategic decision:
– Each CCI domain gets its own unique (user/tool) 

API and corresponding (base) class libraries and 
features

– Each CCI domain gets its own unique (user/tool) 
API but shall leverage the same underlying 
foundational elements

… and which of these foundational elements 
should end-up in a future SystemC standard?

User/tool 
API

“Middle-
layer”



Discussion

19


