
IEEE 1666-2023
SystemC Deep Dive

Laurent Maillet-Contoz, Accellera SystemC LWG Chair

Jérôme Cornet, IEEE P1666-2023 Chair

1

Previously on SystemC…

• SystemC IEEE 1666-2023 released on September, 8th

• Announcement on SystemC September Fika, “Sneak peek” presentation

– C++ 17 baseline

– SC_NAMED(), SC_CTOR with arguments, Deprecated SC_HAS_PROCESS

– sc_vector additions

– Stage Callback, Suspend mechanism

• Replay

– https://systemc.org/events/scef202309/

© Accellera Systems Initiative 2

https://systemc.org/events/scef202309/

SYSTEMC EVENTS

© Accellera Systems Initiative 3

SystemC events: time out or not timeout…

© Accellera Systems Initiative 4

IEEE 1666-2011

SystemC events: time out or not timeout…

© Accellera Systems Initiative 5

IEEE 1666-2011

SystemC events: or lists

© Accellera Systems Initiative 6

IEEE 1666-2011

SystemC events: or lists

© Accellera Systems Initiative 7

IEEE 1666-2011

SystemC events: “persistence”

© Accellera Systems Initiative 8

IEEE 1666-2011

Did it?

SystemC events: “persistence”

© Accellera Systems Initiative 9

IEEE 1666-2011

SystemC events additions

• New method: triggered()

– Returns true if and only if:

• The event has been triggered in the immediately preceding delta notification phase

OR

• The event has been triggered in the current evaluation phase via an immediate notification.

© Accellera Systems Initiative 10

SystemC events: time out or not timeout…

© Accellera Systems Initiative 11

IEEE 1666-2023

SystemC events: or lists

© Accellera Systems Initiative 12

IEEE 1666-2023

SystemC events: “persistence”

© Accellera Systems Initiative 13

IEEE 1666-2023

Other SystemC events additions

• New “None event”

– Event guaranteed to be never notified

– Useful for some contexts where event references are required

– Example: TLM-1 interfaces

• Events can now be traced!

© Accellera Systems Initiative 14

SYSTEMC TIME

© Accellera Systems Initiative 15

SystemC time

• Main class representing simulation time values

– sc_time and companion sc_time_unit

• Long-standing issues

– Textual parsing

– Load and dump of raw values

• New requests

– Analog Mixed-Signal time scales

– Missing operator

© Accellera Systems Initiative 16

SystemC time: textual parsing

© Accellera Systems Initiative 17

IEEE 1666-2023

Note: new constructor and static method are using std::string_view.

SystemC time: load and dump raw values

• Dump

© Accellera Systems Initiative 18

IEEE 1666-2011

SystemC time: load and dump raw values

• Loading

© Accellera Systems Initiative 19

IEEE 1666-2011

SystemC time: load and dump raw values

• Loading

© Accellera Systems Initiative 20

IEEE 1666-2023

Other SystemC time additions

• New modulo operator

• Extra time units

– Attosecond (10-18): SC_AS

– Zeptosecond (10-21): SC_ZS

– Yoctosecond (10-24) : SC_YS

• Better definition of corner cases with Time Resolution

© Accellera Systems Initiative 21

Other SystemC time additions (2)

• sc_time instances can now be traced!

© Accellera Systems Initiative 22

SYSTEMC SIGNALS

© Accellera Systems Initiative 23

Signals additions

• Reset value at construction time

© Accellera Systems Initiative 24

IEEE 1666-2023

Signals additions (2)

• Tie and unbound

© Accellera Systems Initiative 25

IEEE 1666-2023

SYSTEMC HIERARCHY API

© Accellera Systems Initiative 26

Object Hierarchy in SystemC

• sc_object-and-its-descendants hierarchy

– sc_module, sc_port, sc_export, sc_prim_channel, tlm_initiator_socket, etc.

– Fixed at construction time

– New objects are hierarchically nested in their parent
(except for special cases, see TLM-2 sockets, port classes aggregating other ports)

• Process & sc_event hierarchy

– Two separate hierarchies

– Parallel but unified!

– Evolve with creation/destruction of instances during simulation

© Accellera Systems Initiative 27

Hierarchical names in practice

• Method name() returns the full hierarchical name of hierarchical object

– Companion basename() method (NEW: basename() in sc_process_handle)

• Hierarchical name also appears in introspection tools

• Conflict between names are checked upon object creation

• sc_gen_unique_name() allows avoiding duplicates

© Accellera Systems Initiative 28

Issues with hierarchy

• Multiple corner cases

– Need to know current hierarchy outside of any proper sc_object contexts

– Need to create objects
• At construction time

• But outside the constructor of the corresponding object/module

• Other object hierarchies also existing!

– Configuration Parameter (ex: CCI)

– Other simulations (ex: UVM SystemC, other languages)

– How to reconcile everyone?

© Accellera Systems Initiative 29

Additions

• Getting hierarchical context from anywhere

– sc_get_current_sc_object() returns current “parent”

• Controlling hierarchical point of instantiation for objects

– Allows instantiation at top level…

– … or from a given hierarchical point

– Use a new class: sc_hierarchy_scope
• sc_object::get_hierarchy_scope()

• sc_hierarchy_scope::get_root()

© Accellera Systems Initiative 30

Hierarchy scope example

© Accellera Systems Initiative 31

IEEE 1666-2011

Hierarchy scope example

© Accellera Systems Initiative 32

IEEE 1666-2023

Hierarchy scope example

© Accellera Systems Initiative 33

IEEE 1666-2023

modern version

Additions (2)

• Reconciling with other hierarchies

– Query whether a hierarchical name already exist
• sc_hierarchical_name_exists()

– “Book” a given hierarchical name
• sc_register_hierarchical_name()

• sc_unregister_hierarchical_name()

© Accellera Systems Initiative 34

ISO C++17 IN SYSTEMC API

© Accellera Systems Initiative 35

C++17 in SystemC API

• C++17 new baseline for SystemC

• What about C++17 features use in the API?

– Indirect uses
• SC_NAMED (in-class direct initialization)

• sc_assert ([[noreturn]] attribute)

– Direct uses
• sc_time (std::string_view)

• sc_[un]register_hierarchical_name() (std::string_view)

© Accellera Systems Initiative 36

C++17 in SystemC API (2)

• Why isn’t there string_view everywhere?

– Compatible with const char *… more or less, what about NULL/nullptr?

• Paving the way for the future

– Used string_view in new APIs

– Retained const char * in several locations for this revision

– Introduced several restrictions to prepare for string_view
• get_log_file_name() no longer returns NULL

• Passing NULL/nullptr to SystemC APIs using const char * as parameter is now illegal

• More to do on other topics in next revisions!

© Accellera Systems Initiative 37

GRAB BAG

© Accellera Systems Initiative 38

Grab bag

• Logic vector & Fixed-point datatypes bit references

• Thorough test and update of code examples in LRM

• Inclusive language

• Cleanup of definition for sc_argc & sc_argv to match ISO C++

• Cleanup of const qualifiers in return values

© Accellera Systems Initiative 39

Grab bag (2)

• sc_object missing virtual destructor

• Proper restrictions on sc_start(float)

• TLM clarifications & bug fixes

– TLM-1 tlm::tlm_fifo_get_if disambiguation

– TLM-2 Request/Response rule clarified for multi-sockets

– TLM-2 set_extension/set_auto_extension errata

– TLM-2 Non-blocking Transport State Diagram fix

© Accellera Systems Initiative 40

Grab bag (3)

• Report handlers

– New get_handler() to return current handler

– Proper definition of SC_DEFAULT_INFO_ACTIONS, etc. in sc_core namespace

– sc_assert() now leveraging [[noreturn]]

• sc_get_status() can now be called from external thread

• Base classes and virtual functions

– sc_port_base, sc_export_base: new get_interface(), get_interface_type()

– New template-free base class for TLM-2 sockets: tlm::tlm_base_socket_if

© Accellera Systems Initiative 41

Grab bag (4)

• Removal of all numeric values for enum constants

– Actuel numeric value is implementation-defined

– Examples: sc_starvation_policy, sc_stop_mode, sc_status, …

– Allows proper addition of new constants without ordering problems

– Retain proper logical wise operations when needed

© Accellera Systems Initiative 42

Errata

• Some errata yet to be published on IEEE side
– Stage callbacks (p51 &60):

void sc_register_stage_callback(const sc_stage_callback_if&, int);

void sc_unregister_stage_callback(const sc_stage_callback_if&, int);

should be replaced with:
void sc_register_stage_callback(sc_stage_callback_if&, int);

void sc_unregister_stage_callback(sc_stage_callback_if&, int);

– None event, definition p124 should read:
static const sc_event & none();

– Version number, IEEE_1666_SYSTEMC should read 202301L

© Accellera Systems Initiative 43

	Slide 1: IEEE 1666-2023 SystemC Deep Dive
	Slide 2: Previously on SystemC…
	Slide 3: SystemC Events
	Slide 4: SystemC events: time out or not timeout…
	Slide 5: SystemC events: time out or not timeout…
	Slide 6: SystemC events: or lists
	Slide 7: SystemC events: or lists
	Slide 8: SystemC events: “persistence”
	Slide 9: SystemC events: “persistence”
	Slide 10: SystemC events additions
	Slide 11: SystemC events: time out or not timeout…
	Slide 12: SystemC events: or lists
	Slide 13: SystemC events: “persistence”
	Slide 14: Other SystemC events additions
	Slide 15: SYSTEMC Time
	Slide 16: SystemC time
	Slide 17: SystemC time: textual parsing
	Slide 18: SystemC time: load and dump raw values
	Slide 19: SystemC time: load and dump raw values
	Slide 20: SystemC time: load and dump raw values
	Slide 21: Other SystemC time additions
	Slide 22: Other SystemC time additions (2)
	Slide 23: SYSTEMC SIGNALS
	Slide 24: Signals additions
	Slide 25: Signals additions (2)
	Slide 26: SYSTEMC HIERARCHY API
	Slide 27: Object Hierarchy in SystemC
	Slide 28: Hierarchical names in practice
	Slide 29: Issues with hierarchy
	Slide 30: Additions
	Slide 31: Hierarchy scope example
	Slide 32: Hierarchy scope example
	Slide 33: Hierarchy scope example
	Slide 34: Additions (2)
	Slide 35: ISO C++17 in SYSTEMC API
	Slide 36: C++17 in SystemC API
	Slide 37: C++17 in SystemC API (2)
	Slide 38: GRAB BAG
	Slide 39: Grab bag
	Slide 40: Grab bag (2)
	Slide 41: Grab bag (3)
	Slide 42: Grab bag (4)
	Slide 43: Errata

