
SCP : Reporting library
Mark Burton

© Accellera Systems Initiative, Inc.

Keep It Generic

Goal of the SystemC Common Practices is that you should be able

to pick up a ‘component’ on it’s own and use it – without needing

to take the whole library.

2

This Photo by Unknown Author is licensed under CC

BY-NC

https://pngimg.com/download/51448
https://creativecommons.org/licenses/by-nc/3.0/

© Accellera Systems Initiative, Inc.

SCP : reporting

▪ What did we want:

- Generic and independent of other library components (of course)

- Wanted this, but ... Our current implementation has some dependencies.

- At least try to ensure that there is no dependencies on other SCP components.

- Work with SystemC (using sc_report_ under the hood)

- A convenient user API (FATAL, INFO….)

- Nice syntax like FMT (“the answer is {}.”, 42)

- VERY LOW simulation cost (a single ‘if’ to determin whether to report or not)

- Driven by ‘CCI’ configuration so its easy to switch on/off

▪ Existing implementation here:

- https://github.com/accellera-official/systemc-common-practices/tree/main/report

3

https://github.com/accellera-official/systemc-common-practices/tree/main/report

© Accellera Systems Initiative, Inc.

Some examples….

▪ SCP_TRACE() << "My trace message”

▪ SCP_INFO(”thing”)(“A is {} b is {} together they are {}”,1,1,42);

▪ SCP_DEBUG(())(”Devils inside”)

▪ SCP_WARN(())(“George, don’t do that”);

▪ SCP_FATAL(SCMOD)<<“No Going Back”;

- . . .

4

© Accellera Systems Initiative, Inc.

Architecture stack

5

Marco “fluff”

SCP_INFO…..
Sc_report ….. Spdlog ‘backend’

© Accellera Systems Initiative, Inc.

Existing features : Basic logging

▪ SCP_TRACE() << "My trace message”

- Print a trace out.

▪ SCP_TRACE()(“The answer is {}”, 42);

- Print using {FMT}

▪ SCP_TRACE(“my feature”) << “Another trace”

- Print a trace on a feature. (The feature can then be switched off/on)

▪ SCP_TRACE(SCMOD) << “More trace”

- Convenience to use the current module name as the feature name

6

© Accellera Systems Initiative, Inc.

Existing features : Init/Config

Uses spdlog ‘under the hood’ (an external

dependencies)

MANY options to configure the output

(uses sc_report as a ‘backend’)

If this isn’t called, a ‘default’ setup is provided.

7

scp::init_logging(

scp::LogConfig()

.logLevel(scp::log::DEBUG)

.msgTypeFieldWidth(20)

.fileInfoFrom(5)

.logAsync(false)

.printSimTime(false)

.logFileName(logfile));

© Accellera Systems Initiative, Inc.

SystemC 2.3.4-Accellera --- Feb 26 2024 10:17:20

Copyright (c) 1996-2022 by all Contributors,

ALL RIGHTS RESERVED

[I] [0 s]CLArgumentParser : Parse command line for --gs_luafile option (11 arguments)

[D] [0 s](I1) : LuaFile_Tool Constructor

[W] [0 s]CLArgumentParser : --images-dir is an internal option used for testing. Do not make any assumptions on its behavior as it may change or even disappear in the future.

[I] [0 s]CLArgumentParser : Option --gs_luafile with value /Users/mburton/work/tmp/qqvp/configs/fw/8540/bsp/qnx/conf.lua

[I] [0 s]CLArgumentParser : Lua file command line parser: parse option --gs_luafile /Users/mburton/work/tmp/qqvp/configs/fw/8540/bsp/qnx/conf.lua

[I] [0 s](I1) : Read lua file '/Users/mburton/work/tmp/qqvp/configs/fw/8540/bsp/qnx/conf.lua'

[I] [0 s]CLArgumentParser : Setting param platform.with_gpu to value false

[I] [0 s]CLArgumentParser : Setting param platform.timeprinter.log_level1 to value 4

[I] [0 s]CLArgumentParser : Setting param platform.qemu_inst.sync_policy to value "multithread-quantum"

[W] [0 s]pla....hexagon_cluster_0.l2vic: QOM Device creation l2vic

[W] [0 s]pla...hexagon_cluster_0.qtimer: QOM Device creation qct-qtimer

[W] [0 s]pla...in.hexagon_cluster_0.csr: Reset

[W] [0 s]pla...uster_0.hexagon_thread_0: QOM Device creation v67-hexagon-cpu

8

© Accellera Systems Initiative, Inc.

Existing features : Feature loggers

▪ Avoid “lookup hash”

▪ SCP_LOGGER((my_logger));

- Define the variable my_logger as a logger that can be used in an SCP_TRACE.

- The default logger is (), and it’s name will be the current module name (AND the module class name!)

- Loggers can be named to other strings – e.g. SCP_LOGGER((),”my_feature”)

▪ SCP_TRACE((my_logger)) << “More trace”;

- my_logger is a variable in the current context (it is an integer which carries the level of logging above which

the logger will output).

- There is also an ‘array’ mechanism to build an array of loggers.

- This whole mechanism is somewhat ‘awkward’ but we have it because we can’t associate loggers with

modules within ‘standard’ SystemC.

9

© Accellera Systems Initiative, Inc.

Pic of a module with a logger in it

#include <systemc>

#include <scp/report.h>

class myMod : public sc_core::sc_module

{

private:

SCP_LOGGER();

myMod(const sc_core::sc_module_name& name)

SCP_TRACE(())(”constructor");

}

10

The logger is just an int…

Initialized on first use (e.g. with CCI log level)

Once initialized, all SCP_ calls will use the int.

(“Macro magic all collapses to ”if (this->logger) sc_report…”)

Without the ‘logger’, the macro expands

and calls a std::hash/map to find if we’re

logging. (quite expensive)

© Accellera Systems Initiative, Inc.

Existing features : CCI configuration

▪ Each feature (from a logger or not) can be enabled/disabled using CCI

My.module.feature.log_level=5

▪ The value sets the level above which logging will be enabled.

▪ A bunch of ‘matching’ rules makes enabling/disabling easier:

- E.g. top.log_level sets the log level for everything below top.

- *.b.log_level sets the log level for anything with ‘b’ under it.

11

© Accellera Systems Initiative, Inc.

Problem : everything else wants to use it!

▪ Every single other components needs to use some sort of reporting

▪ It’s horrible to have to go back to sc_report_...

▪ So – the reporting library needs to go upstream !!!!

12

This Photo by Unknown Author is licensed under CC BY-NC

https://www.pngall.com/river-png/
https://creativecommons.org/licenses/by-nc/3.0/

© Accellera Systems Initiative, Inc.

So – what do we need (revisited)

- Generic and independent of other library components (of course)

- Work with SystemC (using sc_report_ under the hood)

- Maybe better to build sc_report over the top of a better interface?

- A convenient user API (FATAL, INFO….)

- Nice ‘FMT’ syntax (“the answer is {}.”, 42)

- VERY LOW simulation cost (a single ‘if’ to determin whether to report or not)

- Driven by ‘CCI’ configuration so its easy to switch on/off

- ‘CCI’ isn’t in the kernel or an IEEE standard (yet) – it can be one way to set what is enabled/disabled, but we could have

a ‘clean’ interface.

- One (non) discussion, by the time this goes into the SystemC standard, we would probably be moving to

C++20, which already has FMT ’built in’ (so no issues about external libraries).

- Spdlog is currently a ‘back end’ implementation, which does not need to be part of the standard.

13

© Accellera Systems Initiative, Inc.

Architecture stack

14

Marco “fluff”

SCP_INFO…..
Sc_report ….. Spdlog ‘backend’

Marco “fluff”

SCP_INFO…..
Sc_report ….. Spdlog ‘backend’

Or maybe . . .

This….

To Be Descided

© Accellera Systems Initiative, Inc.

What else?

- PLEASE JOIN IN!

- ‘loggers’ that send to multiple feature logs?

- Can we remove some complexity?

- Is spdlog the right ‘back end’ – should we build sc_report

ontop, or should we use sc_report as a back end?

- ”step one” – separate the CCI mechanism from the loggers,

so the loggers can be added to e.g. ‘sc_module’ (anywhere

else? sc_object?)

15

