
SystemC Synthesis Workgroup Update
Frederic Doucet, Qualcomm, SWG chair
Mike Meredith, Cadence Design Systems, SWG member
Stuart Swan, Siemens EDA SWG member
May 30th 2024

© Accellera Systems Initiative, Inc.

Agenda

▪ Workgroup introduction and overview of SystemC-based HLS (Fred)

▪ Content of Current SWG Standard 1.4.7 (Mike)

▪ Overview of important items for standardization (Stuart)

▪ Summary and Call for participation (Fred)

2

© Accellera Systems Initiative, Inc.

SystemC Synthesis Workgroup

▪ Workgroup objectives:

1. Define synthesizable subset and consistent modeling style for SystemC HLS

2. Streamline SystemC HLS syntax and semantics to

a) achieve interoperability between HLS/HLV tool,

b) help standardize HLS/HLV design flows and trainings to be tool independent, and

▪ Current public standard: 1.4.7

- Workgroup re-starting with focus on new items

▪ Standardization process

1. Members list, discuss and agree on candidate items for standardization

2. Design Objective Document (DOD) documents work items for standardization

3. Open call for contributions from workgroup members for DOD work items

4. WG members to submit contributions for specific item

a) WG discusses contribution, works with contributor on any requested changes, and

b) votes for inclusion in standards document and collateral (PoC / test code etc)

3

https://accellera.org/images/downloads/standards/systemc/SystemC_Synthesis_Subset_1_4_7.pdf

© Accellera Systems Initiative, Inc.

Typical SystemC High-level Synthesis Flow

4

SystemC

Design

High-Level

Synthesis

testbench

driver monitor

RTL

Design

testbench

driver monitor

RTL synth,

P&R, …

Engineers write, verify, refine C++/SystemC design …

… writes testbench environments: SystemC/C++, Matlab, SV UVM,

… perform code/functional coverage closure on SystemC/C++ model

… achieves RTL sign off by confirming design QOR

… perform code/functional coverage closure on RTL

… leverage existing SystemC/C++ and SV UVM testbenches

… RTL then goes into

standard tapeout flows

4

HLS

Directives

… use HLS to synthesize the SystemC into Verilog RTL

… use directives to tell the tool how to generate the RTL microarchitecture…

© Accellera Systems Initiative, Inc.

Focus of SystemC Synthesis Standard Workgroup

5

RTL

Design

testbench

driver monitor

Standardize …

 … inputs syntax and meaning of HLS tool and

 … expected outputs of HLS tool

5

SystemC

Design

High-Level

Synthesis

testbench

driver monitor

HLS

Directives

© Accellera Systems Initiative, Inc.

Agenda

▪ Workgroup introduction and overview of SystemC-based HLS (Fred)

➢Content of Current SWG Standard 1.4.7 (Mike)

▪ Overview of important items for standardization (Stuart)

▪ Sumary and Call for participation (Fred)

6

© Accellera Systems Initiative, Inc.

Scope of Current SystemC Synthesizable Subset Standard

▪ Current standard is version 1.4.7

▪ Objectives for the 1.4.7 standard

- Define a meaningful minimum subset

- Establish a baseline for transportability of code between HLS tools

- Leave open the option for vendors to implement larger subsets and still be compliant

- Include useful C++ semantics, if they can be known statically – eg templates

▪ Covers behavioral model in SystemC for synthesis

▪ Covers RTL model in SystemC for synthesis

7

© 2017 Accellera Systems Initiative, Inc.

Elements of the 1.4.7 standard

8

▪SystemC Elements

▪ Modules

▪ Processes

- SC_CTHREAD

- SC_THREAD

- SC_METHOD

▪ Reset

▪ Signals, ports, exports

▪ SystemC datatypes

▪C++ Elements

▪ C++ datatypes

▪ Expressions

▪ Functions

▪ Statements

▪ Namespaces

▪ Classes

▪ Overloading

▪ Templates

© Accellera Systems Initiative, Inc.9

=> Syntax to provide hardware-meaning to C++

- Modules

- Signal ports

- Signal connections

- Processes

- Wait statements

HLS tool strictly follows the syntax to transform SystemC into Verilog

SystemC Synthesizable Subset Standard 1.4.7
Hardware structure

1: SC_MODULE(DUT) {
 2: sc_in <bool> SC_NAMED(clk);
 3: sc_in <bool> SC_NAMED(nrst);
 4:
 5: sc_in <sc_int<12>> SC_NAMED(a);
 6: sc_in <sc_int<12>> SC_NAMED(b);
 7: sc_in <sc_int<12>> SC_NAMED(c);
 8: sc_in <sc_int<12>> SC_NAMED(d);
 9: sc_out<sc_int<24>> SC_NAMED(z);
10:
11: SC_CTOR(DUT) {
12: SC_THREAD(proc);
13: sensitive << clk.pos();
14: reset_signal_is(rst_n, false);
15: }
16:
17: void process() {
18: z = 0;
19: wait();
20:
21: while (true) {
22: auto v1 = a * b;
23: auto v2 = c * d;
24: auto v3 = v1 + v2;
25: wait();
26: z = (v3>>1);
27: }
28: }
29: };

DUTa
b
c
d

z

nrst
clk

© Accellera Systems Initiative, Inc.

Not in current Standard: HLS Directives

▪ Instructs the HLS tool how to generate the micro-architecture

- Impacts latency, resources, registers, multiplexers, FSM, etc.

- They are as important to the design as the source code

▪ Subject of standardization activities

10

1: SC_MODULE(DUT) {
...
17: void process() {
18: z = 0;
19: wait();
20:
21: while (true) {
22: auto v1 = a * b;
23: auto v2 = c * d;
24: auto v3 = v1 + v2;
25: wait();
26: z = (v3>>1);
27: }
28: }
29: };

“small design"

“fast design"

HLS

HLS

© Accellera Systems Initiative, Inc.

Agenda

▪ Workgroup introduction and overview of SystemC-based HLS (Fred)

▪ Content of Current SWG Standard 1.4.7 (Mike)

➢Overview of important items for standardization (Stuart)

▪ Summary and Call for participation (Fred)

11

Key HLS Directives

➔ Array implementation

- Memory, register file, registers

➔ Loop implementation

- Unrolling, pipelining, merging, etc.

➔ Custom resources

- Larger resources that can be used by the scheduler

- Arithmetic optimizations cluster for coarser grain resource sharing

- Multicycle operations

➔ Scheduling

- Latency/throughput constraints:

- where/when to add states

- Protocol constraints :

- Where/how to access I/O

sc_int<12> data[N];

sc_int<12> coeffs[N];

...

MAC_H: for (int i=0;i<N;i++) {

 acc += data[i] * coeffs[i];

}

+
a

b

c

d
dout

t1

t2

t3

+

+

Resource

Allocation

Characterized

Library of

Components

+++

Operations

+
Hardware Resource

Delay = 3 ns

Area = 320 um2

+

*

*

*

*

+

+

12

Some C++ constructs can interpreted in a variety of ways when synthesizing SystemC into RTL

© Accellera Systems Initiative, Inc.

Channels and Memory Architecture

13

• Channel-based I/O can be implemented

as SystemC IP

- Can implement TLM and PIN-level semantics

- Presents TLM API to the design

• Memories can be modeled as

- SystemC IP

• Shown here

- C++ Arrays

• Standardization of channels and memory

libraries and IP is a topic of planned work

- Exact syntax specifics will be discussed

1: SC_MODULE(MatrixMultiply) {
2: sc_in<bool> SC_NAMED(clk) ;
3: sc_in<bool> SC_NAMED(rstn);
4:
5: Connections::In <sc_int<8>> SC_NAMED(A);
6: Connections::In <sc_int<8>> SC_NAMED(B);
7: Connections::Out<sc_int<8+8+3>> SC_NAMED(C);
8: Connections::SyncChannel SC_NAMED(sync);
9:
10: shared_bank_array<sc_int<8>, 8, 8*2> SC_NAMED(B_transpose);
11: Connections::Combinational<array_t<sc_int<8>,8>> SC_NAMED(A_row);
12:
13: SC_CTOR(matrixMultiply) {
14: SC_THREAD(pack_A);
15: sensitive << clk.pos();
16: async_reset_signal_is(rstn, false);
17:
18: SC_THREAD(transpose);
19: sensitive << clk.pos();
20: async_reset_signal_is(rstn, false);
21:
22: SC_THREAD(mac);
23: sensitive << clk.pos ();
24: async_reset_signal_is(rstn, false);
25: }
...

TLM

Channels

Memory

Models

© Accellera Systems Initiative, Inc.

Directives for Loop Unrolling and Pipelining

▪ Many forms of directives can be considered

- Pragmas or other annotations in the source code

- Shown here

- External, e.g. Tcl control

▪ Standardizing one or more approaches is a topic

of planned work

14

1: void mac() {
 2: C.Reset();
 3: A_row.ResetRead();
 4: sync.reset_sync_in();
 7: bool ping_pong = false;
 8: wait();
 9:
10: while (1) {
11: sc_int<8+8+3> acc = 0;
12: sync.sync_in();
13: #pragma hls_pipeline_init_interval 1
14: #pragma pipeline_stall_mode flush
15: ROW:for(int i = 0; i < 8; i++) {
16: auto A_dat = A_row.Pop();
17: COL:for(int j = 0; j < 8; j++) {
18: асс = 0;
19: #pragma hls unroll yes
20: MAC:for(int k = 0; k < 8; k++) {
21: auto B_dat = B_transpose[K][j + 8*ping_pong];
22: acc += A_dat.data[k] * B_dat;
23: C.Push(acc);
24: ping_pong = !ping_pong;
25: }
26: }
27: }
28: }
29: }

HLS Directives specified

using inlined pragmas

Loop Pipelining: Throughput and Latency

▪ HLS users need the ability to do

accurate performance analysis on

the pre-HLS model

- Much better than on RTL

▪ HLS tool will increase design

latency when pipelining a loop, for

a specified throughput

- … to meet timing or reduce area

▪ Use of channels with handshake

makes design robust to such

changes

- These channels need to be

standardized

15

Pre-HLS SystemC simulation waveform

Generated RTL simulation waveform w/ pipeline

© Accellera Systems Initiative, Inc.

Agenda

▪ Workgroup introduction and overview of SystemC-based HLS (Fred)

▪ Content of Current SWG Standard 1.4.7 (Mike)

▪ Overview of important items for standardization (Stuart)

➢Summary and Call for participation (Fred)

16

© Accellera Systems Initiative, Inc.

HLS Standardization Topics

1. Syntax and semantic interpretation

- Unambiguous interpretation SystemC syntax for synthesis

- Structure and Interfaces: modules, ports

- Behavior descriptions: methods, threads and wait()

- Scheduling rules (where states are added, how are I/O kept together etc.)

- Expected syntax for HLS-generated output

2. HLS Directives

- loops (pipelining, unrolling etc.), arrays and memories, input and output scheduling, specification of latency

and throughput constraints, etc

3. Communication interfaces

- Channels (point-to-point, fifos, message passing) and memory-like constructs (banks, sram)

17

© Accellera Systems Initiative, Inc.

HLS Standardization Topics

4. Modern language constructs

- Which C++17/C++20 language constructs to be supported for HLS

- Which standard library classes (std::*) to be supported for HLS

5. Synthesizable Data types

- Float, complex, arrays, fixed-point, composite data types support (arrays, structs, complex data type)

- How to we synthesize arrays, structs and other abstract collections to different storage types

- Standalone header files for all synthesizable datatypes.

6. SOC/infrastructure libraries and common design basic blocks

7. Proof-of-concept implementation and examples

- To drive the success, discuss a code tarball documenting the standard with:

- Regression suite : qualify the syntax works the way as expected, and

- Set of examples: more educational, demonstrating the standard modeling style

18

© Accellera Systems Initiative, Inc.

Call for participation

▪ Join the workgroup !

- https://www.accellera.org/activities/working-groups/systemc-synthesis

- https://workspace.accellera.org/wg/SWG/dashboard

▪ Meeting schedule:

- On the 2nd Wednesday of every month

- 8:00 AM - 9:30 AM PDT / 17:00 - 18:30 CET

19

https://www.accellera.org/activities/working-groups/systemc-synthesis
https://workspace.accellera.org/wg/SWG/dashboard

Thank you for listening!

	Slide 1: SystemC Synthesis Workgroup Update Frederic Doucet, Qualcomm, SWG chair Mike Meredith, Cadence Design Systems, SWG member Stuart Swan, Siemens EDA SWG member May 30th 2024
	Slide 2: Agenda
	Slide 3: SystemC Synthesis Workgroup
	Slide 4: Typical SystemC High-level Synthesis Flow
	Slide 5: Focus of SystemC Synthesis Standard Workgroup
	Slide 6: Agenda
	Slide 7: Scope of Current SystemC Synthesizable Subset Standard
	Slide 8: Elements of the 1.4.7 standard
	Slide 9
	Slide 10: Not in current Standard: HLS Directives
	Slide 11: Agenda
	Slide 12: Key HLS Directives
	Slide 13: Channels and Memory Architecture
	Slide 14: Directives for Loop Unrolling and Pipelining
	Slide 15: Loop Pipelining: Throughput and Latency
	Slide 16: Agenda
	Slide 17: HLS Standardization Topics
	Slide 18: HLS Standardization Topics
	Slide 19: Call for participation
	Slide 20

