
SystemC Multi-kernel support and thread
safety

Contributions from SystemC LWG,
MachineWare GmbH

COSEDA Technologies GmbH

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by SystemC LWG members, MachineWare and Coseda to use
this material in developing all future revisions and editions of the
resulting draft and approved Accellera Systems Initiative SystemC
standard, and in derivative works based on the standard.

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

Outline

• History

• Coseda: Parallel SystemC Simulation - Does this make sense?

• MachineWare: Parallel/Distributed/Multi-Kernel Simulation is solved

• SystemC LWG: Simulations With Multiple sc_simcontexts
– Dropped to timeconstraints

• Summary

• Questions/Discussion

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

Open room discussion

Material is presented,

room participation is highly appreciated

History

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• Selected history of SystemC Evolution Day/Fika coverage:
– SCED 2016

– SCED 2019

– Fika
April 2022

– SCED 2022

Seven Obstacles in the Way of Parallel SystemC Simulation
Abstract | Presentation

Rainer Dömer, University of California

Multi-Threaded SystemC and External Interfaces
Abstract | Presentation

Mark Burton, Greensocs

Pushing the Limits of Standard-Compliant Parallel SystemC
Simulation Presentation

Rainer Dömer, University of California

Synchronizing simulators, and Save and Restore Presentation Mark Burton, Greensocs

Distributed simulation and SystemC Presentation Mark Burton, Qualcomm

Topic: Parallelization of SystemC simulations
sc_during, SCale, Intel Simics, RISC

Fika link

https://systemc.org/events/sced2016/#seven-obstacles-in-the-way-of-parallel-systemc-simulation
https://workspace.accellera.org/document/dl/10928
https://systemc.org/events/sced2016/#12-multi-threaded-systemc-and-external-interfaces
https://workspace.accellera.org/document/dl/10932
https://workspace.accellera.org/document/dl/10952
https://workspace.accellera.org/document/dl/10953
https://workspace.accellera.org/document/dl/11404
https://systemc.org/events/scef202204/

SystemC LWG content: usecases

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

The Intel® Simics® Simulator and SystemC* and Threading,

Jacob Engblom, Intel, Fika 04-2022

THE ANALOG AND DIGITAL SYSTEM LEVEL COMPANY

© COSEDA Technologies GmbH | COSIDE® - DESIGN ENVIROMENT FOR HETEROGENEOUS SYSTEMS

Parallel SystemC Simulation - Does this make sense?

• Numerous method processes – moderate number of thread processes

• Negligible computation load per process

• Difficult to predict computation loads, changing over time loads

• Extremely high activations counts

• Tight coupling of processes

• Central/Global simulation kernel

Parallel SystemC – Does this make sense?

SystemC Models

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• High computational load per parallelized OS execution threads

• Decoupling (delay between) of parallelized OS execution threads

• Load balancing between parallelized OS execution threads

• Certain level of thread safety

Challenges:

• Causality / Reproducibility

• Debuggability

• Early speedup saturation – or slow down due synchronization overhead, cache and branch prediction effects

• Implementation effort

Parallel SystemC – Does this make sense?

Requirements for successful parallelization

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• Numerous (global) memory manager

• (Global) result caching

• Numerous (global) static variables

• Which functions/resources must be
accessible from different OS threads

Parallel SystemC – Does this make sense?

Implementation Challenge – Thread Safety

int main(int argn,char* argc[])
{
 std::thread my_thread(
 []()
 {
 sc_dt::sc_uint<64> varth=42;
 std::uint64_t cnt=0;
 while(cnt++<10000000) varth.to_string();
 });

 sc_dt::sc_uint<64> varm=24;
 std::uint64_t cnt=0;
 while(cnt++<10000000) varm.to_string();

 my_thread.join();

 std::cout << "Test was successful" << std::endl;

 return 0;
}

-> Segmentation Fault in .to_string()

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• Checkpointing

• Shorting/split simulation scenarios – run scenarios parallel

• Optimizing single kernel performance

Parallel SystemC – Does this make sense?

There are (cheaper) alternatives?

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• Dataflow (TDF) cluster have usually significant computational load (can consist a lot
modules and may equation solver)

• Delays are explicitly modelled and can be analyzed and used for parallelization

• SystemC AMS time axis are still decoupled – no global data structure/scheduler

• Challenges:

– Implementation effort

– SystemC thread safe issues

Parallel SystemC – Does this make sense?

Parallelizing SystemC AMS

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• SystemC AMS tracing has may a significant effort due to time axis synchronization

• Tracing has no feedback -> can be decoupled

• Parallelization implemented in current reference implementation – can be enabled
by configure option

• May crashes if SystemC datatypes are traced (thread safe issue described in
previous slides)

• Depending on the use case a significant speed up possible (if tracing dominates) – at
least not yet an example with a performance decrease found

Parallel SystemC – Does this make sense?

SystemC AMS – Low hanging fruit parallelization

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

MachineWare GmbH
Virtual Hardware, Real Benefit

Hot Take:

Parallel/Distributed/Multi-Kernel

Simulation is solved

theoretically…[1]
and we don’t really NEED changes in SystemC

[1]: K. Chandy et al., “Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs,” IEEE Transactions on Software Engineering, 1979.

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

SystemC Multi-Kernel / Thread Safety - What does it mean?

● Scenario

○ Multiple entities compute in parallel with their own local simulation time

○ Data is sent between entities

○ Called: Parallel, Distributed, Multi-Kernel, Multi-Domain, Multi-Scale, …

● General Problem

○ How to move data? (easy)

○ How to synchronize time? (difficult)

○ Is it worth the effort? (difficult)

● SystemC-specific Problems

○ What does “SystemC” mean? TLM LT, TLM AT, Classic, AMS, Synthesis, …

○ What to standardize?

○ How to retroactively introduce thread-safety into an existing SW project/Standard/API?

■ E.g. what should be guaranteed thread-safe and what not?

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

What does it mean for SystemC?

● Goals: Faster Simulation, More Simulator Use Cases

● Similar methods published in conferences for many years (solved problem)

● Topics

o Co-Simulation with other (SystemC) simulations

o “Parallel” SystemC Simulation

❑ Compute and Sync

❑ Parallel SC_THREADS

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

Co-Simulation with other (SystemC) simulations

● Method

o Instantiate many (SystemC) simulations processes (on many different hosts)

o Connect for moving data and timing synchronization

● Examples

o Vector SIL Kit (open-source, MIT license)

❑ Synchronize time, move (bus) data between participants

❑ SystemC integration fairly easy, no changes to standard required

o FMI

o And many more

● No kernel changes required

● What about deterministic execution?

o Not trivial. Is it needed?

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

Parallel SystemC Simulation: Compute and Sync

● Method

o Execute computation in parallel to SystemC (separate thread)

o Synchronize time with SystemC when required

❑ async_request_update, …

● Examples

o VCML async, open-source, Apache-2.0

o GreenSocs RunOnSysC, open-source, Apache-2.0

o sc_during, open-source, LGPL

o Probably many more …

● Similar to what QEMU does, but with more (SystemC) overhead

● No kernel changes required

● What about deterministic execution?

o Not trivial. Is it needed?

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

Parallel SystemC Simulation: Parallel SC_THREAD

● Method

1. Add API to SystemC to create parallel SC_THREADS and synchronize them

2. …

3. Profit

● Examples

o Ventroux et al. - SCale (and more)

o Weinstock et al. - SCope

o And probably many more

● Needs kernel changes

● What about deterministic execution?

● What is the usecase?

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

What would be nice anyways? SystemC 4.0

● Thread safe SystemC API functions guaranteed by Standard

o e.g. sc_timestamp, async_request_update, suspend, …

● Discussion: Parallel transport interface

o Cannot call wait()

o Do not assume SC_THREAD context

o Do not assume called from main SystemC OS thread

o Thread-safe

o Can only annotate time using parameter passed by reference

o What about event notify()?

Summary

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• Running several (communicating) (SystemC) simulations in parallel is basically solved
– Is it?
– With limitations!

• When running in multiple processes, interfaces are explicit and no inadvertent sharing is happening.
• When running in the same process, it’s get’s ugly quickly.

• Running multiple kernels within the same process is tricky in practice
– non-existent thread-safety of SystemC (e.g. datatypes, multiple simcontext)
– things people use in their models (e.g. singletons, global variables, static variables etc.) that make

parallelization non-straight forward in practice

• For coarse-grained parallelization in general, the FSS WG looks at the “hard” part of
standardizing interfaces synchronization that works effectively and efficiently for all
relevant use cases.
– To align with FSS we need isolated SystemC ‘islands’ using a controlled interface (through static linking with

symbol hiding of everything except the interface).

SystemC LWG

Summary

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

• Currently (multi-process, isolated kernels) are outside of SystemC’s scope.
• However, some “asynchronous” interaction is described in the SystemC standard
➔ therefore, we must acknowledge processing outside of SystemC’s main thread.

• Ideas for SystemC 4.0 or 3.x?
➔ rework the thread-safety guarantees for the kernel in certain key areas:
– Datatypes — not thread-safe today

• Not much standards work needed
• Mostly implementation effort

– Selected parts of the kernel/simcontext
• State/Phase
• Simulation time
• More?

– Tracing/Logging/Reporting
– Combine/serialize results from multiple sources
– (Co-)Simulation control

• Calling sc_pause/“sc_continue" from the outside
– Tool interfaces (CCI)

SystemC LWG

Note: we have to decide

which usecase(s)

we want to support!

Multiple process (isolated)

or multithreaded kernel

Questions?

SystemC Multi-kernel support and thread

safety © Accellera Systems Initiative

	Default Section
	Slide 1: SystemC Multi-kernel support and thread safety

	Default Section
	Slide 2: Copyright Permission
	Slide 3: Outline
	Slide 4: History
	Slide 5: SystemC LWG content: usecases
	Slide 6: Parallel SystemC Simulation - Does this make sense?
	Slide 7: Parallel SystemC – Does this make sense?
	Slide 8: Parallel SystemC – Does this make sense?
	Slide 9: Parallel SystemC – Does this make sense?
	Slide 10: Parallel SystemC – Does this make sense?
	Slide 11: Parallel SystemC – Does this make sense?
	Slide 12: Parallel SystemC – Does this make sense?
	Slide 13: MachineWare GmbH Virtual Hardware, Real Benefit
	Slide 14: SystemC Multi-Kernel / Thread Safety - What does it mean?
	Slide 15: What does it mean for SystemC?
	Slide 16: Co-Simulation with other (SystemC) simulations
	Slide 17: Parallel SystemC Simulation: Compute and Sync
	Slide 18: Parallel SystemC Simulation: Parallel SC_THREAD
	Slide 19: What would be nice anyways? SystemC 4.0
	Slide 20: Summary
	Slide 21: Summary
	Slide 22: Questions?

