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Outline

• History

• Coseda: Parallel SystemC Simulation - Does this make sense?

• MachineWare: Parallel/Distributed/Multi-Kernel Simulation is solved

• SystemC LWG: Simulations With Multiple sc_simcontexts
– Dropped to timeconstraints

• Summary

• Questions/Discussion
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Open room discussion

Material is presented,

room participation is highly appreciated
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• Selected history of SystemC Evolution Day/Fika coverage:
– SCED 2016

– SCED 2019 

– Fika
April 2022

– SCED 2022

Seven Obstacles in the Way of Parallel SystemC Simulation
Abstract | Presentation

Rainer Dömer, University of California

Multi-Threaded SystemC and External Interfaces
Abstract | Presentation

Mark Burton, Greensocs

Pushing the Limits of Standard-Compliant Parallel SystemC 
Simulation Presentation

Rainer Dömer, University of California

Synchronizing simulators, and Save and Restore Presentation Mark Burton, Greensocs

Distributed simulation and SystemC Presentation Mark Burton, Qualcomm

Topic: Parallelization of SystemC simulations
sc_during, SCale, Intel Simics, RISC

Fika link

https://systemc.org/events/sced2016/#seven-obstacles-in-the-way-of-parallel-systemc-simulation
https://workspace.accellera.org/document/dl/10928
https://systemc.org/events/sced2016/#12-multi-threaded-systemc-and-external-interfaces
https://workspace.accellera.org/document/dl/10932
https://workspace.accellera.org/document/dl/10952
https://workspace.accellera.org/document/dl/10953
https://workspace.accellera.org/document/dl/11404
https://systemc.org/events/scef202204/


SystemC LWG content: usecases
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The Intel® Simics® Simulator and SystemC* and Threading,

Jacob Engblom, Intel, Fika 04-2022
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Parallel SystemC Simulation - Does this make sense?



• Numerous method processes – moderate number of thread processes

• Negligible computation load per process

• Difficult to predict computation loads, changing over time loads

• Extremely high activations counts

• Tight coupling of processes

• Central/Global simulation kernel

Parallel SystemC – Does this make sense?

SystemC Models
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• High computational load per parallelized OS execution threads

• Decoupling (delay between) of parallelized OS execution threads

• Load balancing between parallelized OS execution threads

• Certain level of thread safety

Challenges:

• Causality / Reproducibility

• Debuggability

• Early speedup saturation – or slow down due synchronization overhead, cache and branch prediction effects

• Implementation effort

Parallel SystemC – Does this make sense?

Requirements for successful parallelization
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• Numerous (global) memory manager

• (Global) result caching

• Numerous (global) static variables

• Which functions/resources must be 
accessible from different OS threads

Parallel SystemC – Does this make sense?

Implementation Challenge – Thread Safety

int main(int argn,char* argc[])
{
   std::thread my_thread(
   []()
   {
     sc_dt::sc_uint<64> varth=42;
     std::uint64_t cnt=0;
     while(cnt++<10000000) varth.to_string();
   });

   sc_dt::sc_uint<64> varm=24;
   std::uint64_t cnt=0;
   while(cnt++<10000000) varm.to_string();

   my_thread.join();

   std::cout << "Test was successful" << std::endl;

   return 0;
}

-> Segmentation Fault  in .to_string()
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• Checkpointing

• Shorting/split simulation scenarios – run scenarios parallel

• Optimizing single kernel performance

Parallel SystemC – Does this make sense?

There are (cheaper) alternatives?
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• Dataflow (TDF) cluster have usually significant computational load (can consist a lot 
modules and may equation solver)

• Delays are explicitly modelled and can be analyzed and used for parallelization

• SystemC AMS time axis are still decoupled – no global data structure/scheduler

• Challenges:

– Implementation effort

– SystemC thread safe issues

Parallel SystemC – Does this make sense?

Parallelizing SystemC AMS
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• SystemC AMS tracing has may a significant effort due to time axis synchronization

• Tracing has no feedback -> can be decoupled

• Parallelization implemented in current reference implementation – can be enabled 
by configure option

• May crashes if SystemC datatypes are traced (thread safe issue described in 
previous slides)

• Depending on the use case a significant speed up possible (if tracing dominates) – at 
least not yet an example with a performance decrease found

Parallel SystemC – Does this make sense?

SystemC AMS – Low hanging fruit parallelization
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MachineWare GmbH
Virtual Hardware, Real Benefit

Hot Take:

Parallel/Distributed/Multi-Kernel

Simulation is solved

theoretically…[1]
and we don’t really NEED changes in SystemC

[1]: K. Chandy et al., “Distributed Simulation: A Case Study in Design and Verification of
Distributed Programs,” IEEE Transactions on Software Engineering, 1979.
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SystemC Multi-Kernel / Thread Safety - What does it mean? 

● Scenario

○ Multiple entities compute in parallel with their own local simulation time

○ Data is sent between entities

○ Called: Parallel, Distributed, Multi-Kernel, Multi-Domain, Multi-Scale, …

● General Problem

○ How to move data? (easy)

○ How to synchronize time? (difficult)

○ Is it worth the effort? (difficult)

● SystemC-specific Problems

○ What does “SystemC” mean? TLM LT, TLM AT, Classic, AMS, Synthesis, …

○ What to standardize?

○ How to retroactively introduce thread-safety into an existing SW project/Standard/API?

■ E.g. what should be guaranteed thread-safe and what not?



SystemC Multi-kernel support and thread 

safety © Accellera Systems Initiative

What does it mean for SystemC?

● Goals: Faster Simulation, More Simulator Use Cases

● Similar methods published in conferences for many years (solved problem)

● Topics

o Co-Simulation with other (SystemC) simulations

o “Parallel” SystemC Simulation

❑ Compute and Sync

❑ Parallel SC_THREADS
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Co-Simulation with other (SystemC) simulations

● Method

o Instantiate many (SystemC) simulations processes (on many different hosts)

o Connect for moving data and timing synchronization

● Examples

o Vector SIL Kit (open-source, MIT license)

❑ Synchronize time, move (bus) data between participants

❑ SystemC integration fairly easy, no changes to standard required

o FMI

o And many more

● No kernel changes required

● What about deterministic execution?

o Not trivial. Is it needed?
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Parallel SystemC Simulation: Compute and Sync

● Method

o Execute computation in parallel to SystemC (separate thread)

o Synchronize time with SystemC when required

❑ async_request_update, …

● Examples

o VCML async, open-source, Apache-2.0 

o GreenSocs RunOnSysC, open-source, Apache-2.0

o sc_during, open-source, LGPL

o Probably many more …

● Similar to what QEMU does, but with more (SystemC) overhead

● No kernel changes required

● What about deterministic execution?

o Not trivial. Is it needed?
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Parallel SystemC Simulation: Parallel SC_THREAD

● Method

1. Add API to SystemC to create parallel SC_THREADS and synchronize them

2. …

3. Profit

● Examples

o Ventroux et al. - SCale (and more)

o Weinstock et al. - SCope

o And probably many more

● Needs kernel changes

● What about deterministic execution?

● What is the usecase?
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What would be nice anyways? SystemC 4.0

● Thread safe SystemC API functions guaranteed by Standard

o e.g. sc_timestamp, async_request_update, suspend, …

● Discussion: Parallel transport interface

o Cannot call wait()

o Do not assume SC_THREAD context

o Do not assume called from main SystemC OS thread

o Thread-safe

o Can only annotate time using parameter passed by reference

o What about event notify()?



Summary
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• Running several (communicating) (SystemC) simulations in parallel is basically solved
– Is it?
– With limitations!

• When running in multiple processes, interfaces are explicit and no inadvertent sharing is happening.
• When running in the same process, it’s get’s ugly quickly.

• Running multiple kernels within the same process is tricky in practice
– non-existent thread-safety of SystemC (e.g. datatypes, multiple simcontext) 
– things people use in their models (e.g. singletons, global variables, static variables etc.) that make 

parallelization non-straight forward in practice

• For coarse-grained parallelization in general, the FSS WG looks at the “hard” part of 
standardizing interfaces synchronization that works effectively and efficiently for all 
relevant use cases.
– To align with FSS we need isolated SystemC ‘islands’ using a controlled interface (through static linking with 

symbol hiding of everything except the interface).

SystemC LWG



Summary
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• Currently (multi-process, isolated kernels) are outside of SystemC’s scope.
• However, some “asynchronous” interaction is described in the SystemC standard
➔ therefore, we must acknowledge processing outside of SystemC’s main thread.

• Ideas for SystemC 4.0 or 3.x?
➔ rework the thread-safety guarantees for the kernel in certain key areas:
– Datatypes — not thread-safe today

• Not much standards work needed
• Mostly implementation effort

– Selected parts of the kernel/simcontext
• State/Phase
• Simulation time
• More?

– Tracing/Logging/Reporting
– Combine/serialize results from multiple sources
– (Co-)Simulation control

• Calling sc_pause/“sc_continue" from the outside
– Tool interfaces (CCI)

SystemC LWG

Note: we have to decide

which usecase(s)

we want to support!

Multiple process (isolated)

or multithreaded kernel



Questions?
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