
CCI Updates: Inspection

Lukas Jünger – MachineWare GmbH

Peter de Jager - Intel Corporation

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Intel Corporation and MachineWare GmbH to use this
material in developing all future revisions and editions of the resulting
draft and approved Accellera Systems Initiative SystemC CCI standard,
and in derivative works based on the standard.

2
CCI Updates: Inspection

© Accellera Systems Initiative

Outline

• Background & Motivation

• History

• Definitions

• Inspection Proposal

• Demo

• Questions/Discussion

3
CCI Updates: Inspection

© Accellera Systems Initiative

Background & Motivation

4

Goal: Standardizing interfaces between models and tools

CCI 1.0

System debug Analysis Authoring

Checkpointing,

Reverse

simulation

Config, Control, Inspection Tool Use Cases

Parameters Registers Probes Save/Restore Commands

Configuration
State

(registers, …)

Data (performance,

power, …)

Built-in debug

features

Standard Interfaces

Model Information

CCI Updates: Inspection

© Accellera Systems Initiative

History
• …. Even earlier….

• 2017 SCED: ‘Standardization Around Registers’,
Mark Burton (GreenSocs), Jerome Cornet (ST), Ola Dahl (Ericsson), Philipp Hartmann (Intel)

– Introduces the uses-cases, difficulties etc. Highlights that it is not a modeling standard!
Tool access (inspection) is orthogonal to modeling functional behavior

• 2019 SCED: ‘Re-Envisioning CCI Inspection’,
Bill Bunton & Philipp Hartmann (Intel), Michael Lebert & Ola Dahl (Ericsson)

– What should be inspected, what is inspection etc. High-level proposal on inspection interfaces, portals etc.

• … gap … (no active CCI-WG, pandemic etc.)

• 2022 CCI-WG revamped

• 2023 SCED: ‘SystemC CCI: What’s new? What’s next?’

– a.o. mentions the memory-inspection proposal of NXP

5
CCI Updates: Inspection

© Accellera Systems Initiative

Background & Motivation

• VPs are combination of models from different sources

• Users want to configure, control and inspect the VP and its models

• Integrators need to provide means to do so

– Need standardized interfaces on the models

– How to handle different frameworks (external IP) that cannot be adapted?

– How to handle legacy models?

• It must be ‘easy’ to use the proposed CCI inspection interfaces

– Otherwise risk of no adoption

6
CCI Updates: Inspection

© Accellera Systems Initiative

CCI: Inspection Scenario

CCI Updates: Inspection

© Accellera Systems Initiative
7

(G)UI Tool

Conn.

Vendor A Simulation

CCI
Discovery
Interface

Vendor B Model

Inspectable State

Vendor C Model

Inspectable State

Vendor D Model

Inspectable State

Vendor E Model

Inspectable State

User

Definitions
• Inspection

– Inspect (peek), modify (poke), notification (callback), metadata (name,
hierarchy, description?)

– Metadata should be minimalized since that can also be provided using
other means (IP-XACT?) if name/hierarchy can be matched.

• Inspection items
– Memory, registers (memory-mapped and internal), model variables,

simulation-only variables etc.

• Hierarchy
– An item is located in a modelling-hierarchy which may or may not be

identical/coincide with the implemented (SystemC) hierarchy

– Inspection hierarchy is the virtual view on the VP as meant for the
user

– Inspection hierarchy should ideally be identical to user-
documentation of the system represented in the VP

• Discovery (previously “portal”)
– Maintain registered items and provide lookup-mechanism based on

metadata (e.g. name)

8
CCI Updates: Inspection

© Accellera Systems Initiative

Nested Model

Inspection Item (Memory)

Inspection Item (State)

Inspection Item (Register)

Inspection Item (Memory)

Inspection Item (State)

Inspection Item (Register)

Model

Discovery Interface

Inspection Proposal
• Header-only, PoC implementation provided by CCI-WG
• Can be used independently from SystemC (i.e. does not use SystemC code/types)

• Item interface: cci::inspection::item_if
– Defines (pure) virtual methods for name, hierarchy, peek/poke, type (REG, REG_BANK, MEM, Other) and capabilities (R/RW, …)

• Peek/poke use byte arrays, offset and size

– No callbacks (yet)
– Meant for inspection items of any type, within a SystemC module, in external C++ libraries, … (hybrid simulations)

• Inspection target does not need to be in address map

– Hierarchy may be virtual (i.e. not corresponding to physical or SystemC hierarchy)
– Type & capabilities are to be used in tool (display, access, …) to prevent tool using methods that will fail (return false)

• Discovery interface: cci::inspection::discovery_if
– Defines (pure) virtual methods for (de)registering items at a hierarchical location and lookup mechanism (all items, items @

hierarchy level)

• User entry point: discovery_if& get_discovery_if()

9
CCI Updates: Inspection

© Accellera Systems Initiative

DRAFT

Inspection Proposal: Current Status
• What's inside?

– CCI Inspection header: ”standard to be” header for CCI Inspection, C++11 compatible, < 100 LOC

– PoC CCI Inspection library: PoC implementation of discovery interface

– Example inspection items and adapters

• What’s next?
– Further alignment on inspection item and discovery interface (callbacks, hierarchy, …)

– CCI Inspection Standard draft

• Example inspection items:
– Direct Inheritance

– Custom Register Class Adapter

– SystemC TLM-2.0 Debug Interface Adapter

– VCML Register Adapter

10
CCI Updates: Inspection

© Accellera Systems Initiative

Inspection Proposal: Example Scenario
• User scenario: (G)UI for controlling/inspecting simulation

– Based on MachineWare VCML to enable ViPER, PyVP use with CCI configuration and inspection interface

(G)UI connected to Simulation

User Simulation

(G)UI

Comms
Layer

Se
ss

io
n

 C
o

n
tr

o
lle

r
(C

C
I r

o
a

d
 m

a
p

)

Module

Parameters

Inspection

Run-Control

11

CCI
Parameter

Broker

CCI Updates: Inspection

© Accellera Systems Initiative

Paused

Running

Status

Run

Step

Break

Control

Info (via cci)

Item

Item

Item

Stopped

Param

Param

Param

CCI
Discovery
Interface

Scripts

Module
Module
Module
Module

Scenario: Direct Inheritance
• Inspectable class inheriting from cci_inspection::item_if to give access to internal state

– InspectableClass implements cci_inspection::item_if directly

• Simple, but need to be able to change InspectableClass (e.g. Register)

12
CCI Updates: Inspection

© Accellera Systems Initiative

cci::inspection::item_if

InspectableClass

Demo

CCI Updates: Inspection

© Accellera Systems Initiative
13

Scenario: VCML Register Adapter
• Adapters inheriting from cci_inspection::item_if to interface with VCML registers

– class reg_adapter : public ::cci::inspection::item_if

– reg_adapter has reference to VCML register implementation to access value

• VCML registers are enumerated and registered to the discovery interface at the start of simulation
– This could be replaced by a way of providing metadata for item registration, e.g. to register only specific registers

14
CCI Updates: Inspection

© Accellera Systems Initiative

cci::inspection::item_if

vcml::cci::reg_adapter vcml::reg_base

Demo

CCI Updates: Inspection

© Accellera Systems Initiative
15

Scenario: Custom Register Adapter
• Adapters inheriting from cci_inspection::item_if to interface with classes that cannot be modified

– template <typename T, typename StorageType> class RegisterDebugAdapter : public cci::inspection::item_if :
accesses register class T using StorageType (e.g. uint32_t)

– Requires peek/poke like-functionality on class T

16
CCI Updates: Inspection

© Accellera Systems Initiative

cci::inspection::item_if

RegisterDebugAdapter

<T,S>

Custom Register class T

Scenario: TLM2.0 Debug Interface Adapter
• Adapters inheriting from cci_inspection::item_if to interface with classes that cannot be modified

– template <typename T> class RegisterDebugTransportAccessor : public cci::inspection::item_if :
accesses (part of) item (@ address, size bytes) via tlm-2 debug transport

• template <typename T> class RegisterDebugTransportAccessor : public cci::inspection::item_if :
accesses item via TLM-2 debug transport

• Useful if you want to provide access to certain locations as a register/memory without exposing details
about the underlying model(s) in your simulation.

• Only requires (filtered) memory-map of your system

– Could be generated via IP-XACT (out of scope)

17
CCI Updates: Inspection

© Accellera Systems Initiative

cci::inspection::item_if

RegisterDebugTransport
Accessor

<T>

Initiator socket type T

Additional Concepts Demonstrated
• Metadata provider

– DebugTransportGenerator module

– Connects to target-socket of VP-system

– Can read CSV-file on startup that defines hierarchy, name, memory location and size of the items

– Creates the RegisterDebugTransportAccessor items and registers these to portal

• Runtime access

– DebugRuntime module

– Can access portal and reads/modifies items @ runtime

• Session controller

– Modified version of MachineWare VCML to enable ViPER use with CCI parameters and inspection interface

18
CCI Updates: Inspection

© Accellera Systems Initiative

Demo

CCI Updates: Inspection

© Accellera Systems Initiative
19

Call To Action

• Summary
– Goal: Standard interface for inspection of model state, memories, registers, …

– C++11 header-only inspection interface ready for feedback

– PoC and several examples already done, ready for testing

• If you find this interesting
– Join the CCI-WG call (every 2nd week Tuesday evening)

– Provide your feedback on the CCI mailing list

• Questions?

CCI Updates: Inspection

© Accellera Systems Initiative
20

	Default Section
	Slide 1: CCI Updates: Inspection

	Default Section
	Slide 2: Copyright Permission
	Slide 3: Outline
	Slide 4: Background & Motivation
	Slide 5: History
	Slide 6: Background & Motivation
	Slide 7: CCI: Inspection Scenario
	Slide 8: Definitions
	Slide 9: Inspection Proposal
	Slide 10: Inspection Proposal: Current Status
	Slide 11: Inspection Proposal: Example Scenario
	Slide 12: Scenario: Direct Inheritance
	Slide 13: Demo
	Slide 14: Scenario: VCML Register Adapter
	Slide 15: Demo
	Slide 16: Scenario: Custom Register Adapter
	Slide 17: Scenario: TLM2.0 Debug Interface Adapter
	Slide 18: Additional Concepts Demonstrated
	Slide 19: Demo
	Slide 20: Call To Action

