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Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is 
granted by Intel Corporation and MachineWare GmbH to use this 
material in developing all future revisions and editions of the resulting 
draft and approved Accellera Systems Initiative SystemC CCI standard, 
and in derivative works based on the standard.
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Background & Motivation
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History
• …. Even earlier….

• 2017 SCED: ‘Standardization Around Registers’,
Mark Burton (GreenSocs), Jerome Cornet (ST), Ola Dahl (Ericsson), Philipp Hartmann (Intel)

– Introduces the uses-cases, difficulties etc. Highlights that it is not a modeling standard!
Tool access (inspection) is orthogonal to modeling functional behavior

• 2019 SCED: ‘Re-Envisioning CCI Inspection’,
Bill Bunton & Philipp Hartmann (Intel), Michael Lebert & Ola Dahl (Ericsson)

– What should be inspected, what is inspection etc. High-level proposal on inspection interfaces, portals etc.

• … gap … (no active CCI-WG, pandemic etc.)

• 2022 CCI-WG revamped

• 2023 SCED: ‘SystemC CCI: What’s new? What’s next?’

– a.o. mentions the memory-inspection proposal of NXP
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Background & Motivation

• VPs are combination of models from different sources

• Users want to configure, control and inspect the VP and its models

• Integrators need to provide means to do so

– Need standardized interfaces on the models

– How to handle different frameworks (external IP) that cannot be adapted?

– How to handle legacy models?

• It must be ‘easy’ to use the proposed CCI inspection interfaces

– Otherwise risk of no adoption
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CCI: Inspection Scenario
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Definitions
• Inspection

– Inspect (peek), modify (poke), notification (callback), metadata (name, 
hierarchy, description?)

– Metadata should be minimalized since that can also be provided using 
other means (IP-XACT?) if name/hierarchy can be matched.

• Inspection items
– Memory, registers (memory-mapped and internal), model variables, 

simulation-only variables etc.

• Hierarchy
– An item is located in a modelling-hierarchy which may or may not be 

identical/coincide with the implemented (SystemC) hierarchy

– Inspection hierarchy is the virtual view on the VP as meant for the 
user

– Inspection hierarchy should ideally be identical to user-
documentation of the system represented in the VP

• Discovery (previously “portal”)
– Maintain registered items and provide lookup-mechanism based on 

metadata (e.g. name)
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Inspection Proposal
• Header-only, PoC implementation provided by CCI-WG
• Can be used independently from SystemC (i.e. does not use SystemC code/types)

• Item interface: cci::inspection::item_if
– Defines (pure) virtual methods for name, hierarchy, peek/poke, type (REG, REG_BANK, MEM, Other) and capabilities (R/RW, …)

• Peek/poke use byte arrays, offset and size

– No callbacks (yet)
– Meant for inspection items of any type, within a SystemC module, in external C++ libraries, … (hybrid simulations)

• Inspection target does not need to be in address map

– Hierarchy may be virtual (i.e. not corresponding to physical or SystemC hierarchy)
– Type & capabilities are to be used in tool (display, access, …) to prevent tool using methods that will fail (return false)

• Discovery interface: cci::inspection::discovery_if
– Defines (pure) virtual methods for (de)registering items at a hierarchical location and lookup mechanism (all items, items @ 

hierarchy level)

• User entry point: discovery_if& get_discovery_if()
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Inspection Proposal: Current Status
• What's inside?

– CCI Inspection header: ”standard to be” header for CCI Inspection, C++11 compatible, < 100 LOC

– PoC CCI Inspection library: PoC implementation of discovery interface

– Example inspection items and adapters

• What’s next?
– Further alignment on inspection item and discovery interface (callbacks, hierarchy, …)

– CCI Inspection Standard draft

• Example inspection items:
– Direct Inheritance

– Custom Register Class Adapter

– SystemC TLM-2.0 Debug Interface Adapter

– VCML Register Adapter
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Inspection Proposal: Example Scenario
• User scenario: (G)UI for controlling/inspecting simulation

– Based on MachineWare VCML to enable ViPER, PyVP use with CCI configuration and inspection interface
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Scenario: Direct Inheritance
• Inspectable class inheriting from cci_inspection::item_if to give access to internal state

– InspectableClass implements cci_inspection::item_if directly

• Simple, but need to be able to change InspectableClass (e.g. Register)
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Demo
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Scenario: VCML Register Adapter
• Adapters inheriting from cci_inspection::item_if to interface with VCML registers

– class reg_adapter : public ::cci::inspection::item_if

– reg_adapter has reference to VCML register implementation to access value

• VCML registers are enumerated and registered to the discovery interface at the start of simulation
– This could be replaced by a way of providing metadata for item registration, e.g. to register only specific registers
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Scenario: Custom Register Adapter
• Adapters inheriting from cci_inspection::item_if to interface with classes that cannot be modified

– template <typename T, typename StorageType> class RegisterDebugAdapter : public cci::inspection::item_if : 
accesses register class T using StorageType (e.g. uint32_t)

– Requires peek/poke like-functionality on class T
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Scenario: TLM2.0 Debug Interface Adapter
• Adapters inheriting from cci_inspection::item_if to interface with classes that cannot be modified

– template <typename T> class RegisterDebugTransportAccessor : public cci::inspection::item_if : 
accesses (part of) item (@ address, size bytes) via tlm-2 debug transport

• template <typename T> class RegisterDebugTransportAccessor : public cci::inspection::item_if : 
accesses item via TLM-2 debug transport

• Useful if you want to provide access to certain locations as a register/memory without exposing details
about the underlying model(s) in your simulation.

• Only requires (filtered) memory-map of your system

– Could be generated via IP-XACT (out of scope)

17
CCI Updates: Inspection                                               

© Accellera Systems Initiative

cci::inspection::item_if

RegisterDebugTransport
Accessor

<T>

Initiator socket type T



Additional Concepts Demonstrated
• Metadata provider

– DebugTransportGenerator module 

– Connects to target-socket of VP-system

– Can read CSV-file on startup that defines hierarchy, name, memory location and size of the items

– Creates the RegisterDebugTransportAccessor items and registers these to portal

• Runtime access

– DebugRuntime module

– Can access portal and reads/modifies items @ runtime

• Session controller

– Modified version of MachineWare VCML to enable ViPER use with CCI parameters and inspection interface
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Demo

CCI Updates: Inspection                                               

© Accellera Systems Initiative
19



Call To Action

• Summary
– Goal: Standard interface for inspection of model state, memories, registers, …

– C++11 header-only inspection interface ready for feedback

– PoC and several examples already done, ready for testing

• If you find this interesting
– Join the CCI-WG call (every 2nd week Tuesday evening)

– Provide your feedback on the CCI mailing list

• Questions?
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