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@ Bus Contention

@ Loosely-Timed Contention-Aware Modeling (LT-CA)

e BusyUntil
e BusyMap
e TLM-2.0 LT-CA DNN

@ Experimental Measurements and Results
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Bus Contention

@ Bus contention is a critical aspect in modeling modern multiprocessor
system on a chip (MPSoC)
@ SystemC TLM-2.0 aids system designers with performance estimation

o Loosely-timed (LT)
@ adequate timing, fast simulation, no notion of contention

e Approximately-timed (AT)

@ accurate timing, slow simulation, complex coding, model contention
@ Can we model contention fast but accurately for early system design?
@ Should support different arbitration policies, temporal decoupling and
multi-level interconnects
@ We introduce Loosely-Timed Contention-Aware (LT-CA) modeling to model
contention fast, accurate, and early in the design flow
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Loosely-Timed Contention-Aware (LT-CA)

@ LT-CA key features:
e TLM-2.0 loosely-timed contention modeling with high accuracy at
high-speed simulation
e Early and efficient contention simulation and analysis supporting:
o First-come-first-served (FCFS) and round-robin (RR) arbitration
policies
e Temporal decoupling
e Multiple-level hierarchical interconnects, including multi-level caches or
multiple levels of buses
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LT-CA BusyUntil Contention

@ We propose BusyUntil,
. ; ) Algorithm 1: Modeling bus contention using a time
which uses a state variable in  gamp busy_unti1 (adapted from [14])

the intercon nect to keep Module Bus_BusyUntil begin
. target_socket S_in[NUM_TARGETS];
trac k Of contention initiator_socket S_OUT[NUM_INITIATORS];

time bus_delay;
time contention := 0;
time busy_until := 0;

@ By storing the contention in

H H Procedure ForwardRequest (trans, delay) begin
the tlmlng annotation Of the // perform address translation
blocking tra nsport interface socket := decode_and_translate(trans.address);

. . ! // forward the transaction
the transaction completes in dl := delay; ,
. . socket—b_transport(transaction, delay);
a single function call d2 := delay;

memory_delay :=d2 - dl;

. . // maintain bus contention
@ Sim ple and effective busy_span := bus_delay + memory_delay;

busy_until := max(busy_until, global_time);

d pprOaCh busy_delay := busy_until - global_time;
busy_until += busy_span;
contention += busy_delay;
delay += bus_delay + busy_delay;

end
end
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LT-CA BusyUntil Contention

@ BusyUntil on synthetic
SystemC model: Bus3Init
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LT-CA BusyUntil Contention - Round Robin

@ Not as simple as FCFS,
LT-CA support

round-robin (RR)
scheduling
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@ To avoid complex data
structure such as
Payload Event Queue
(PEQ), we tradeoff
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@ Details of algorithm (5) RR policy

can be found in the
[TECS'23] journal
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LT-CA BusyMap Contention

@ BusyUntil is simple and effective approach but requires improvements for
temporal decoupling and multi-level interconnects

@ We introduce a new data structure, BusyMap, to replace the state variable
in BusyUntil

@ BusyMap allows temporally decoupled initiator modules that use
out-of-order transactions with different delay offsets from the simulator
global_time

@ Ordered map of key-value (k, v) of sc_ time
e key k specifies the start time when the resource becomes busy
e value v specifies the duration of how long the resource is used

Timeline: —'—'9 l ) l >
0 5 10
Busy Periods: [0, 3) 5,7 [8, 12)
Map Elements: 0—>3 5—>2 8—>4

Type: std::map<sc_time, sc_time>
(c) Arasteh SystemC Evolution Day '24 8/24



LT-CA BusyMap Contention

Algor

rithm 2: ing bus ion using y

Module Bus_BusyMap begin

target_socket S_in[NUM_TARGETS];

“Algorithm 3: Modeling bus contention using BusyMap
(continued)

Function FindFreeSlot (carliest,span) begin

if busy_map.empry() then
| retum carliest;

. i!\ilimnr_snckel S_OUT[NUM_INITIATORS]; end
° B u S Co n t e n t I o n time bus_delay; :;e; T\Tnpu ;l’vp;i’e’:;ic;\:l;ilr:::ulmsl):

model contains
the ordered

busy map with
its essential
member variables
and methods

time contention := 0;

ordered_map<time.time> busy_map:
Procedure ForwardRequest (r7ans, delay) begin
/1 perform address translation

/7 forward the trans
d1 := global_time + delay;
socket—b_transport(transaction, delay);
d2 := global_time + delay;
memory_delay := d2 - dI;

// maintain bus contention

busy_span := bus_delay + memory_delay;
AdvanceTim

tion

busy_delay := availabe_slot - d1;
SetBusy(a le_slot, busy_span);
contention += busy_delay:

delay += bus_delay + busy_delay;

end
Procedure AdvanceTime begin
if busy_map.empty() then

keep := busy_map.upper_bound(global_time);
if keep = busy_map.begin() then
| return;

socket = decode_and_translate(trans.address);

available_slot := FindFreeSiot(d1, busy_span);

enc

e
gap_at := 0;

else

| gap_at = previiter)—start + prev(iter)—>duration;
end

if gap_at<carlicst then
| gap_at = carliest;
end
while iter # busy_map.end() do
gap_duration = iter—sstart - gap_at;
if span < gap_duration then
| rewur gap_at;

gap_at := iter—start + iter—duration;
ter++;

return gap_at;
d

Procedure SetBusy (sl span) begin

if busy_map.empiy() then
busy_maplslot] := span;
returm;
end
1 := busy_map.upper_bound(slot);
ifr _map.begin() then
—sstart = slot + span then
busy_maplslot] := span + r-duration;
busy_map.erase(r);

/7 no adjacency, insert a new element
busy_mapfslot] = span;

s
H cut = prev(keep):
@ Details of ik A ™

algorithms can be
found in the
[DATE'24] paper

busy_map.crase(busy_map.begin(), cut);
return;

end

global_time;
busy_map.erase(busy_map.begin(), keep):
busy_map[global_time] = cut_duration;
else
if keep = busy_map.end() then
| busy_map.clear();
else

end
end

if (cut—start + cut—duration) > global_time then
cut_duration := cut—start + cut—+duration -

| busy_map.crase(busy_map.begin(), keep);
end
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rev(r);
if 1 ystart + [-sduration = slot then
if (r  busy_map.end()) and (r—start = slot + span)
then
/7 merge in between adjacent elements
I=sduration += span + r—duration;
busy_map erase(r);

else
/1 merge with adjacent element on the lefi
I-sduration += span:

else
if (1 # busy_map.end()) and (r-sstart = slot + span)
then

/1 merge with adjacent element on the right
busy_maplslot] = span + r->duration:
busy_map.erase(r);

else
/7 no adjacency, insert a new element
busy_map[slot] = span;

TLM-2.0 LT-CA Deep Neural Network (DNN)

9/24

@ DNNs are data-intensive software applications that demand early attention
to performance metrics in the design flow

@ SystemC enables rapid systematic evaluation of design candidates for
lower-level implementation, e.g., RTL

@ We implement SystemC TLM DNN modeling framework

e Generic and self-contained layers, reusability and modularity
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TLM-2.0 LT-CA DNN

@ TLM DNN framework,
netspec, is configurable,
customizable and
extensible

(] TLM']. and TLM'2O Parse DNN model

and architecture

e UT, LT, LT-CA and |
AT

TLM model
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Pre-trained DNN

binary model DNN architecture
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data structure
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Visualization of TLM-2.0 LT-CA DNN

@ We introduce, netmemvisual, visualization tool to plot LT and
LT-CA timing diagrams for rapid contention analysis

@ Interactive and cross-platform supporting command-line and graphical
user interfaces
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Experimental Measurements and Results

@ Measure total simulated time of GooglLeNet for different
computational capacities and memory latencies Using FCFS scheduling
(in seconds)
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@ Generic LT does not take contention into account

@ LT-CA considers the effect of contention and shows high accuracy in
simulated time

@ AT accurately models contention, hence showing a significant increase
in simulated time
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Experimental Measurements and Results - Accuracy

@ Accuracy of LT and LT-CA BusyUntil (FCFS) Compared to Reference
AT

Loosely-timed Loosely-timed contention-aware
comp / memory 1ns 10ns | 100ns | 1000ns 1n 10ns 100ns | 1000ns
1000 GFLOPS
100 GFLOPS
10 GFLOPS

1 GFLOPS

@ LT models shows very low accuracy

@ LT-CA models show almost complete accuracy

(c) Arasteh SystemC Evolution Day '24 14 /24



Experimental Measurements and Results - Accuracy

@ Accuracy of LT and LT-CA BusyUntil (RR) Compared to Reference AT

Loosely-timed Loosely-timed contention-aware
comp / mem 1ns 10ns | 100ns | 1000ns 1n 10ns | 100ns | 1000ns
1000 GFLOPS
100 GFLOPS
10 GFLOPS
1 GFLOPS

@ Same pattern applies for LT and LT-CA models in RR scheduling

@ LT-CA for RR shows a minor decrease in accuracy, it is still a very
accurate model compared to LT
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Experimental Measurements and Results - Speed

@ Measure total simulator run-time of GoogleNet for different
computational capacities and memory latencies using FCFS scheduling
on a 32-core host (in seconds)

Loosely-timed Loosely-timed contention-aware Approximately-timed

comp / mem 1ns 10ns | 100ns | 1000ns 10ns | 100ns | 1000ns 1n | 10ns | 100ns | 1000ns
1000 GFLOPS
100 GFLOPS

10 GFLOPS
1 GFLOPS

@ LT models simulate faster than their LT-CA and AT counterparts

@ LT-CA models simulate slightly slower than LT models (1.2x) but
simulate order of magnitude faster than AT

@ AT models simulate 46x slower than LT and LT-CA
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Experimental Measurements and Results - Visualization

@ TLM timing diagrams for the first inception module in GooglLeNet with pass
of 1 image

@ LT does not model contention so layers in parallel tracks access memory
without blocking each other

@ In LT-CA model, layers are blocked and wait until access becomes available
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Experimental Measurements and Results - Visualization

@ Contention significantly impacts performance when the DNN pipeline is fully
loaded with images (image #75)

@ As a result, most layers experience blocking due to contention
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Experimental Measurements and Results - BusyMap

e Parallel JPEG simulation results running on RISC-V SMP VP
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e BusyMap significantly improves simulator run-time (3x)

@ BusyMap supports temporal decoupling

@ BusyMap has high accuracy in simulated time and contention
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e Fast and accurate LT-CA modeling enables the efficient exploration
of alternative memory organizations

e Early detection of memory contentions suggests that local memories
close to computing cores can eliminate memory contention in such
data-intensive applications
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Conclusion

@ This work improves high-level modeling and simulation of interconnect
contention by navigating trade-offs between simulation speed and
timing accuracy

@ Specifically, we proposed BusyUntil and BusyMap for modeling bus
contention in SystemC TLM-2.0 LT-CA models

e Supports FCFS and RR arbitration policies
e Supports temporal decoupled with out-of-order transactions
o Can effectively model multi-level interconnects and caches

@ Using BusyUntil, we achieve a speedup of up to 46x on a 32-core host
with only 1% accuracy loss in simulated time

@ For temporal decoupled with multi-level caches models (BusyMap), we
achieve a speedup of up to 3x on a 16-core host with only 10%
accuracy loss in simulated time and bus contention compared to
BusyUntil
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