SystemC TLM-2.0 Loosely-Timed Contention-Aware Modeling

Emad Arasteh
arasteh@chapman.edu

Fowler School of Engineering
Chapman University, Orange, CA, USA

NA CHAPMAN

AN UNIVERSITY
accellera o srinc

. EVOLUTION DAY
SYSTEMS INITIATIVE System Platform Exploration Lab (SPEL) OCT 17, 2024 | MUNICH | GERMANY

(c) Arasteh SystemC Evolution Day '24 1/24

@ Bus Contention

@ Loosely-Timed Contention-Aware Modeling (LT-CA)

e BusyUntil
e BusyMap
e TLM-2.0 LT-CA DNN

@ Experimental Measurements and Results

(c) Arasteh SystemC Evolution Day '24 2/24

arasteh@chapman.edu

Bus Contention

@ Bus contention is a critical aspect in modeling modern multiprocessor
system on a chip (MPSoC)
@ SystemC TLM-2.0 aids system designers with performance estimation

o Loosely-timed (LT)
@ adequate timing, fast simulation, no notion of contention

e Approximately-timed (AT)

@ accurate timing, slow simulation, complex coding, model contention
@ Can we model contention fast but accurately for early system design?
@ Should support different arbitration policies, temporal decoupling and
multi-level interconnects
@ We introduce Loosely-Timed Contention-Aware (LT-CA) modeling to model
contention fast, accurate, and early in the design flow

core0 corel COre2 | ceseseesencecens coreld | | corel5 .
Electronic System Level
V| V| V| V| V| (ESL)
1 l l l l Simulation Sntime J(O) | Timing
| L L2 Mbus interconnection M M | Speed Loosely-timed (LT) Accuracy
Wi Loosely-timed
contention-aware (LT-CA)
Approximately-timed (AT)
(c) Arasteh SystemC Evolution Day '24 3/24

Loosely-Timed Contention-Aware (LT-CA)

@ LT-CA key features:
e TLM-2.0 loosely-timed contention modeling with high accuracy at
high-speed simulation
e Early and efficient contention simulation and analysis supporting:
o First-come-first-served (FCFS) and round-robin (RR) arbitration
policies
e Temporal decoupling
e Multiple-level hierarchical interconnects, including multi-level caches or
multiple levels of buses

core0 corel | ceeereceseenees corel4d corel5
Vi v Vi v
M M M M
‘ cacheﬁZ_Ll_O ‘ ‘ cach%_Ll_l ‘ """""""" ‘cached_l_m‘ ‘cached_l_ls‘
é é é é
| cachierZ_O ‘ | cacheﬁZLZ_l ‘ """""""""" |cached.2_14‘ |cached.2_15‘
‘ L2 L2 bus inte&:onnect L2 ‘

“ >
WV}
devices

(c) Arasteh SystemC Evolution Day '24 4/24

LT-CA BusyUntil Contention

@ We propose BusyUntil,
. ;) Algorithm 1: Modeling bus contention using a time
which uses a state variable in gamp busy_unti1 (adapted from [14])

the intercon nect to keep Module Bus_BusyUntil begin
. target_socket S_in[NUM_TARGETS];
trac k Of contention initiator_socket S_OUT[NUM_INITIATORS];

time bus_delay;
time contention := 0;
time busy_until := 0;

@ By storing the contention in

H H Procedure ForwardRequest (trans, delay) begin
the tlmlng annotation Of the // perform address translation
blocking tra nsport interface socket := decode_and_translate(trans.address);

. . ! // forward the transaction
the transaction completes in dl := delay; ,
. . socket—b_transport(transaction, delay);
a single function call d2 := delay;

memory_delay :=d2 - dl;

. . // maintain bus contention
@ Sim ple and effective busy_span := bus_delay + memory_delay;

busy_until := max(busy_until, global_time);

d pprOaCh busy_delay := busy_until - global_time;
busy_until += busy_span;
contention += busy_delay;
delay += bus_delay + busy_delay;

end
end

(c) Arasteh SystemC Evolution Day '24 5/24

LT-CA BusyUntil Contention

@ BusyUntil on synthetic
SystemC model: Bus3Init

core0 corel core2

Computation

Bus contention

A 3 A 4

. Memory access
bus interconnect y

@ Simulation trace for BusyUntil

bus with global quantum value
of zero v

(c) Arasteh SystemC Evolution Day '24 6/24

LT-CA BusyUntil Contention - Round Robin

@ Not as simple as FCFS,
LT-CA support

round-robin (RR)
scheduling

-

ime A B [}
AR)
[ef6)]

50) .i -

@ To avoid complex data
structure such as
Payload Event Queue
(PEQ), we tradeoff

~No oA wWN PO

© ©

A@3)
some accuracy for e l :
. . 12
speed by approximating x| i
the bus contention T —
17
F] E— ,
@ Details of algorithm (5) RR policy

can be found in the
[TECS'23] journal

(c) Arasteh SystemC Evolution Day '24 7/24

LT-CA BusyMap Contention

@ BusyUntil is simple and effective approach but requires improvements for
temporal decoupling and multi-level interconnects

@ We introduce a new data structure, BusyMap, to replace the state variable
in BusyUntil

@ BusyMap allows temporally decoupled initiator modules that use
out-of-order transactions with different delay offsets from the simulator
global_time

@ Ordered map of key-value (k, v) of sc_ time
e key k specifies the start time when the resource becomes busy
e value v specifies the duration of how long the resource is used

Timeline: —'—'9 l) l >
0 5 10
Busy Periods: [0, 3) 5,7 [8, 12)
Map Elements: 0—>3 5—>2 8—>4

Type: std::map<sc_time, sc_time>
(c) Arasteh SystemC Evolution Day '24 8/24

LT-CA BusyMap Contention

Algor

rithm 2: ing bus ion using y

Module Bus_BusyMap begin

target_socket S_in[NUM_TARGETS];

“Algorithm 3: Modeling bus contention using BusyMap
(continued)

Function FindFreeSlot (carliest,span) begin

if busy_map.empry() then
| retum carliest;

. i!\ilimnr_snckel S_OUT[NUM_INITIATORS]; end
° B u S Co n t e n t I o n time bus_delay; :;e; T\Tnpu ;l’vp;i’e’:;ic;\:l;ilr:::ulmsl):

model contains
the ordered

busy map with
its essential
member variables
and methods

time contention := 0;

ordered_map<time.time> busy_map:
Procedure ForwardRequest (r7ans, delay) begin
/1 perform address translation

/7 forward the trans
d1 := global_time + delay;
socket—b_transport(transaction, delay);
d2 := global_time + delay;
memory_delay := d2 - dI;

// maintain bus contention

busy_span := bus_delay + memory_delay;
AdvanceTim

tion

busy_delay := availabe_slot - d1;
SetBusy(a le_slot, busy_span);
contention += busy_delay:

delay += bus_delay + busy_delay;

end
Procedure AdvanceTime begin
if busy_map.empty() then

keep := busy_map.upper_bound(global_time);
if keep = busy_map.begin() then
| return;

socket = decode_and_translate(trans.address);

available_slot := FindFreeSiot(d1, busy_span);

enc

e
gap_at := 0;

else

| gap_at = previiter)—start + prev(iter)—>duration;
end

if gap_at<carlicst then
| gap_at = carliest;
end
while iter # busy_map.end() do
gap_duration = iter—sstart - gap_at;
if span < gap_duration then
| rewur gap_at;

gap_at := iter—start + iter—duration;
ter++;

return gap_at;
d

Procedure SetBusy (sl span) begin

if busy_map.empiy() then
busy_maplslot] := span;
returm;
end
1 := busy_map.upper_bound(slot);
ifr _map.begin() then
—sstart = slot + span then
busy_maplslot] := span + r-duration;
busy_map.erase(r);

/7 no adjacency, insert a new element
busy_mapfslot] = span;

s
H cut = prev(keep):
@ Details of ik A ™

algorithms can be
found in the
[DATE'24] paper

busy_map.crase(busy_map.begin(), cut);
return;

end

global_time;
busy_map.erase(busy_map.begin(), keep):
busy_map[global_time] = cut_duration;
else
if keep = busy_map.end() then
| busy_map.clear();
else

end
end

if (cut—start + cut—duration) > global_time then
cut_duration := cut—start + cut—+duration -

| busy_map.crase(busy_map.begin(), keep);
end

SystemC Evolution Day '24

rev(r);
if 1 ystart + [-sduration = slot then
if (r busy_map.end()) and (r—start = slot + span)
then
/7 merge in between adjacent elements
I=sduration += span + r—duration;
busy_map erase(r);

else
/1 merge with adjacent element on the lefi
I-sduration += span:

else
if (1 # busy_map.end()) and (r-sstart = slot + span)
then

/1 merge with adjacent element on the right
busy_maplslot] = span + r->duration:
busy_map.erase(r);

else
/7 no adjacency, insert a new element
busy_map[slot] = span;

TLM-2.0 LT-CA Deep Neural Network (DNN)

9/24

@ DNNs are data-intensive software applications that demand early attention
to performance metrics in the design flow

@ SystemC enables rapid systematic evaluation of design candidates for
lower-level implementation, e.g., RTL

@ We implement SystemC TLM DNN modeling framework

e Generic and self-contained layers, reusability and modularity

DNN
Specificaion
LM
Models.
Generator

Viogel
Parameters

x

Automatic
Models
Generation
Loosely Timed RLCouentons Approximately Interconnect
) & Timed (AT)

13 !

Design

‘Candidates

Implementation
Candidate

Arasteh SystemC Evolution Day '24 10/ 24

TLM-2.0 LT-CA DNN

@ TLM DNN framework,
netspec, is configurable,
customizable and
extensible

(] TLM']. and TLM'2O Parse DNN model

and architecture

e UT, LT, LT-CA and |
AT

TLM model
parameters

Pre-trained DNN

binary model DNN architecture

[of netspec
data structure

Buffer architecture

Interconnect Consi.,_m

addressing " Soromn o
e Memory and compute

Iatency O soares tien

netspec internal | €
data structure

(c) Arasteh SystemC Evolution Day '24 11 /24

Visualization of TLM-2.0 LT-CA DNN

@ We introduce, netmemvisual, visualization tool to plot LT and
LT-CA timing diagrams for rapid contention analysis

@ Interactive and cross-platform supporting command-line and graphical
user interfaces

inception 3a
pool | T - ite
= Read
ile == Compute
MODULES R SUBPLOTS PARAMETERS Ty e —r—
stim
DISPLAY
data SUBPLOT 1 IMAGE NUMBER
conv1/7x7_s2 TiTLEfinception_3a o 33| — o — —
Convi/relu_7x7 OBULES —- X e = e =
Po0I1/3x3_52 inception_3a/1x1 3
pool1/norm1 e e et
conv2/3x3_reduce x|| SIMULATION 1x]
conv2/relu_3x3_reduce CONTENTION
conv2/3x3 MODULES « ENABLE/DISABLE 51 5.2 5.3 5.4 .5
conv2/relu_3x3 (i) DR DELAY (ps) Simulated time without contention (ms)
Conv2inorm2 —— inception_3a/relu_3x3_reduce o
pool2/3x3_s2 inception_3a/3x3 WORD LATENCY (ps)
Inception 3a/1x1 inception_Sairelu_3x3 00
e on sy redues 2 MODULE READS & WRITES PER IMAGE
inception_3a/5x5_reduce s L . i i
inception_3a/pool T B B . inception_3a
inception_3a/relu_1x1 inception_3a/relu_5x5_reduce pool - Write
inception_3a/relu_3x3_reduce TLEXS inception _3a/5x5 = Read
inception_3a/relu_5x5_reduce inception_Sairelu 545 = Compute
inception_3a/pool_proj P e ———— —— T
inception_3a/3x3 DX S e e e A
inception_3a/5x5 onNiEs
inception_3a/relu_pool_proj ‘”‘:"“°;—“’““’°‘
inception_3a/relu_5x5 TMLEpool) 3 ——— e s mE
inception 3a/relu 33 inception_3ajrelu_pool_proj —_— e I Bl =R
inception_3a/output x|
inception_3b/1x1 ADD TRACK DELETE suBPLOT
inception_3b/3x3_reduce - Ixl T e
inception_3b/5x5_reduce
inception”3b/pool | 51 52 53 54 55 56 57 58 59 60
Simulated time with contention (ms)
CLEAR SELECTION | CREATE SUBPLOT DISPLAY GRAPH | EXPORT CONFIG

(c) Arasteh SystemC Evolution Day '24 12 /24

Experimental Measurements and Results

@ Measure total simulated time of GooglLeNet for different
computational capacities and memory latencies Using FCFS scheduling
(in seconds)

core0 corel COrg2 | ceesweswereecees corel4 | | corel5
[[]

Mpus inter’&onnection o o ‘

nE

Loosely-timed Loosely-timed contention-aware Approximately-timed
comp / mem | lns 10ns 100ns | 1000ns || 1ns 10ns | 100ns | 1000ns || 1n 10ns | 100ns | 1000ns
1000 GFLOPS
100 GFLOPS
10 GFLOPS

1 GFLOPS

Ke—x
le—oi|

@ Generic LT does not take contention into account

@ LT-CA considers the effect of contention and shows high accuracy in
simulated time

@ AT accurately models contention, hence showing a significant increase
in simulated time

(c) Arasteh SystemC Evolution Day '24 13 /24

Experimental Measurements and Results - Accuracy

@ Accuracy of LT and LT-CA BusyUntil (FCFS) Compared to Reference
AT

Loosely-timed Loosely-timed contention-aware
comp / memory 1ns 10ns | 100ns | 1000ns 1n 10ns 100ns | 1000ns
1000 GFLOPS
100 GFLOPS
10 GFLOPS

1 GFLOPS

@ LT models shows very low accuracy

@ LT-CA models show almost complete accuracy

(c) Arasteh SystemC Evolution Day '24 14 /24

Experimental Measurements and Results - Accuracy

@ Accuracy of LT and LT-CA BusyUntil (RR) Compared to Reference AT

Loosely-timed Loosely-timed contention-aware
comp / mem 1ns 10ns | 100ns | 1000ns 1n 10ns | 100ns | 1000ns
1000 GFLOPS
100 GFLOPS
10 GFLOPS
1 GFLOPS

@ Same pattern applies for LT and LT-CA models in RR scheduling

@ LT-CA for RR shows a minor decrease in accuracy, it is still a very
accurate model compared to LT

(c) Arasteh SystemC Evolution Day '24 15 /24

Experimental Measurements and Results - Speed

@ Measure total simulator run-time of GoogleNet for different
computational capacities and memory latencies using FCFS scheduling
on a 32-core host (in seconds)

Loosely-timed Loosely-timed contention-aware Approximately-timed

comp / mem 1ns 10ns | 100ns | 1000ns 10ns | 100ns | 1000ns 1n | 10ns | 100ns | 1000ns
1000 GFLOPS
100 GFLOPS

10 GFLOPS
1 GFLOPS

@ LT models simulate faster than their LT-CA and AT counterparts

@ LT-CA models simulate slightly slower than LT models (1.2x) but
simulate order of magnitude faster than AT

@ AT models simulate 46x slower than LT and LT-CA

(c) Arasteh SystemC Evolution Day '24 16 / 24

Experimental Measurements and Results - Visualization

@ TLM timing diagrams for the first inception module in GooglLeNet with pass
of 1 image

@ LT does not model contention so layers in parallel tracks access memory
without blocking each other

@ In LT-CA model, layers are blocked and wait until access becomes available

red areas
inception 3a inception 3a
pool | e R il P00 | e L L e i W \Write
B Read B Read
N Compute N Compute
Il Contention
5x5 T ETEETE BPeE-—+—— e+~ |]
331 e e CEE e Fms I—ma ==
Ix]l T Ikl e e e
5.1 5.2 5.3 5.4 5.5 51 52 53 54 55 56 57 58 59 6.0
Simulated time without contention (ms) Simulated time with contention (ms)
(c) Arasteh SystemC Evolution Day '24 17 /24

Experimental Measurements and Results - Visualization

@ Contention significantly impacts performance when the DNN pipeline is fully
loaded with images (image #75)

@ As a result, most layers experience blocking due to contention

inception_3a inception_3b inception_4a
pool == = = = = poo| = —— poo| === =] —
5x5 {mmm == = = = 5x5 5x5
3x3 === = = = 3x3 3x3
x1 == == xl : = - IE ; == :
840 850 860 870 880 900 905 910 915 930 935 940 945
Simulated time (ms) Simulated time (ms) Simulated time (ms)
inception_4b inception_4c inception_4d
POO| = = POO| — POO| —
5x5 5x5 5x5
3x3 3x3 3x3
1x1 T T T T Ix1 T =v T Ix1 T T T
960 965 970 975 990 995 1000 1015 1020 1025
Simulated time (ms) Simulated time (ms) Simulated time (ms)
inception_4e inception_5a inception_5b
pool = = pool fFm—————=x = pool == — =
5x5 5x5 5x5
T
3x3 3x3 3x3 e
-
= o Ixl : I : : Ixi : : _—
1035 1040 1045 1060.0 1062.5 1065.0 1067.5 1070.0 1072.5 1082 1084 1086 1088 1090
Simulated time (ms) Simulated time (ms) Simulated time (ms)

(c) Arasteh SystemC Evolution Day '24 18 /24

Experimental Measurements and Results - BusyMap

e Parallel JPEG simulation results running on RISC-V SMP VP

bus inteﬁ;onnect

-t

)
devices

Simulated time

Bus Contention

Simulator run-time

wait statements (cores)

wait statements (caches)

Global quantum
Ons
10ns

BusyUntil | BusyMap

100ns

N/A

1000ns

N/A

10000ns

N/A

BusyUntil | BusyMap

BusyUntil | BusyMap
18m50s
18m48s

11m38s

BusyUntil | BusyMap
63628015
63628015
22157149
6478006

BusyUntil | BusyMap

e BusyMap significantly improves simulator run-time (3x)

@ BusyMap supports temporal decoupling

@ BusyMap has high accuracy in simulated time and contention

(c) Arasteh

Research Outlook

SystemC Evolution Day '24

19/24

e Fast and accurate LT-CA modeling enables the efficient exploration
of alternative memory organizations

e Early detection of memory contentions suggests that local memories
close to computing cores can eliminate memory contention in such
data-intensive applications

(c) Arasteh

Loss3/classifier

SystemC Evolution Day '24

Conclusion

@ This work improves high-level modeling and simulation of interconnect
contention by navigating trade-offs between simulation speed and
timing accuracy

@ Specifically, we proposed BusyUntil and BusyMap for modeling bus
contention in SystemC TLM-2.0 LT-CA models

e Supports FCFS and RR arbitration policies
e Supports temporal decoupled with out-of-order transactions
o Can effectively model multi-level interconnects and caches

@ Using BusyUntil, we achieve a speedup of up to 46x on a 32-core host
with only 1% accuracy loss in simulated time

@ For temporal decoupled with multi-level caches models (BusyMap), we
achieve a speedup of up to 3x on a 16-core host with only 10%
accuracy loss in simulated time and bus contention compared to
BusyUntil

(c) Arasteh SystemC Evolution Day '24 21 /24

References (1)

@ [DATE'24] E. Arasteh, V. Govindasamy, R. Démer: "BusyMap, an Efficient Data
Structure to Observe Interconnect Contention in SystemC TLM-2.0", Proceedings of
Design, Automation and Test in Europe Conference, Valencia, Spain, March 2024.

@ [DVCon'23b] C. Raccomandato, E. Arasteh, R. Démer: "Grid-based Mapping and
Analysis of a GooglLeNet CNN using MapGL Editor", Proceedings (engineering track) of
the Design and Verification Conference in Europe, Munich, Germany, November 2023.

@ [DVCon'23a] C. Raccomandato, E. Arasteh, R. Démer: "MapGL: Interactive Application
Mapping and Profiling on a Grid of Processing Cells", Proceedings (research track) of the
Design and Verification Conference in Europe, Munich, Germany, November 2023.

@ [TECS'23] E. Arasteh, R. Démer: "Fast Loosely-Timed System Models with Accurate
Memory Contention”, Journal of ACM Transactions on Embedded Computing Systems,
July 2023.

@ [FSE’'23] N. Farzan, E. Arasteh, "Visualizing Transaction-Level Modeling Simulations of
Deep Neural Networks", Fowler School of Engineering, Technical Report 23-01, August
2023.

@ [IESS’'22] V. Govindasamy, E. Arasteh, R. Démer: "Minimizing Memory Contention in an
APNG Encoder using a Grid of Processing Cells", Proceedings of the International
Embedded Systems Symposium, "Designing Modern Embedded Systems: Software,
Hardware, and Applications" Springer, Lippstadt, Germany, November 2022.

@ [FDL'21] E. Arasteh, R. Démer: "Improving Parallelism in System Level Models by
Assessing PDES Performance"”, Proceedings of Forum on Specification and Design
Languages, Antibes, France, Sep. 2021.

(c) Arasteh SystemC Evolution Day '24 22 /24

References (2)

@ [CECS'21] E. Arasteh, R. Démer: "Systematic Evaluation of Six Models of GooglLeNet
using PDES", Center for Embedded and Cyber-Physical Systems, Technical Report 21-03,
2021, Sep. 2021.

@ [Springer'20] R. Démer, Z. Cheng, D. Mendoza, E. Arasteh: "Pushing the Limits of
Parallel Discrete Event Simulation for SystemC", in "A Journey of Embedded and
Cyber-Physical Systems" by Jian-Jia Chen, Springer Nature, Switzerland, August 2020.

@ [DATE’'20] D. Mendoza, Z. Cheng, E. Arasteh, R. Ddmer: "Lazy Event Prediction using
Defining Trees and Schedule Bypass for Out-of-Order PDES", Design, Automation and
Test in Europe Conference, Grenoble, France, March 2020.

@ [ASPDAC'20] Z. Cheng, E. Arasteh, R. Démer: "Event Delivery using Prediction for
Faster Parallel SystemC Simulation"”, Asia and South Pacific Design Automation
Conference, Beijing, China, Jan. 2020.

@ [IESS'19] E. Arasteh, R. Démer: "An Untimed SystemC Model of GooglLeNet",
Proceedings of the International Embedded Systems Symposium, Friedrichshafen,
Germany, Sep. 2019.

(c) Arasteh SystemC Evolution Day '24 23 /24

Acknowledgments

@ | would like to give a special thanks to my collaborators:
e The team at UC Irvine

e Rainer Domer

e Vivek Govindasamy

e Zhongqi Cheng, Daniel Mendoza, Claudio Raccomandato
e My team at Chapman

@ Nataniel Farzan
e Ewan Shen
e Maha Bhatti

(c) Arasteh SystemC Evolution Day '24 24 /24

	Outline
	Bus Contention
	Loosely-Timed Contention-Aware (LT-CA)
	Experimental Measurements and Results
	Conclusion
	References
	Acknowledgments

