
Reporting API

Proposal for SystemC 4

Why?

• There are a lot of proposals for ‘common’ models and components

• BUT

• Each one has a different reporting mechanism,

• Conclusion, SystemC’s reporting mechanism, as it stands, is not to
everyone’s (anyones?) taste.

• Lets Modernise what we have, and make it better !

Goals

The goals are:

• Support “{std::format}” style syntax (C++20): (“hello {}”,”world”)

• Support streaming syntax : << “Hello “<<“world”.

• Provide an interface to allow run-time enabling of logging (e.g. via CCI or
other mechanism)

• Be Efficient (e.g. a single ‘if’ that guards the reporter, and the
computation of the message.

• Be independent of SystemC, but work seamlessly with SystemC.

Implementation

• Have to use (nasty) macro’s in order to get the __FILE__ and __LINE__
information and provide the single EFFICIENT ‘if’ mechanism, while
being easy to use.

• Provide a common macro that can take any “level”

• Provide some convenience macros for ‘common’ levels

• Reporting should NOT have any (SystemC specific) side effects.

• e.g. If you wish to sc_throw, or sc_stop, you should call those yourself.

NAMES !!!

• Some of the names we would like to use exist already (SC_LOG)

• The names should be distinct from the SystemC report macros, as they
side effects associated with the report macros will NOT be applicable for
the new macros

• The ‘verbosity’ levels in SystemC are confusing
(SC_LOW/MEDIUM/HIGH, where HIGH is the highest verbosity, but
conversily therefore the least often printed message. LOG_HIGH could
mean the opposite of what most people might imagine)

Proposed names

• CRITICAL

• WARN

• INFO

• DEBUG

• TRACE

• E.g. the macros should all be prepended (to avoide conflice) e.g. LOG_

• E.g.
LOG_WARN(()) << “A Warning”.

Inside the brackets

• LOG_WARN() : Log at the default level of logging (not run-time
changeable)

• LOG_WARN(“name”) : Log with the tag “name”. You may switch “name”
at run time. Note this will use a hash table lookup and may be
expensive. (can be e.g. LOG(name()))

• LOG_WARN((logger)) : logger is a special object which can be instanced
‘locally’. It will cache whether the logger is enabled or not. This provides
a single if, based on an constant and a locally assessible variable. The
special case of (()) uses the default logger in the current class.

Some examples

LOG_TRACE() << "My trace message";

LOG_TRACE("top.mymodel")(”Answer is {}.", 42);

LOG_LOGGER((my_logger),”top.mymodel”);

LOG_TRACE((my_logger)) << "hello";

LOG_TRACE((my_logger),"string")("hello");

What Next?

• Currently being refined in the CPS working group – please join in.

• Expected to move to the Language Working Group very shortly!

	Slide 1: Reporting API
	Slide 2: Why?
	Slide 3: Goals
	Slide 4: Implementation
	Slide 5: NAMES !!!
	Slide 6: Proposed names
	Slide 7: Inside the brackets
	Slide 8: Some examples
	Slide 9: What Next?

