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Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is 
granted by Thilo Vörtler, COSEDA Technologies to use this material in 
developing all future revisions and editions of the resulting draft and 
approved Accellera Systems Initiative SystemC standard, and in 
derivative works based on the standard.
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Introduction

• The VWG is responsible for defining verification 
extensions to the SystemC language standard

• Main focus is the development of UVM in SystemC

• VWG provides proof of concept implementation, 
creates the UVM SystemC standard Language 
Reference Manual

• Support for Constraint Randomization and 
functional Coverage by donated Libraries: 
– CRAVE - Constrained Random Verification Environment

– FC4SC  - Functional Coverage for SystemC
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UVM in SystemC
• Methodology to create modular, scalable, 

configurable and reusable System Level 
testbenches

• Follows the UVM-SystemVerilog Standardized API
– Similar class definitions, methods and other 

definitions in the LRM
– Divergence where SystemC and C++ already offer 

solutions
– Stricter with regards to non-LRM API 

• Complies with SystemC IEEE 1666-2023 standard 
and SystemC 3.0.x reference implementation
– Follow SystemC-defined TLM1 and TLM2 

communication mechanism
– SystemC modules capture testbench hierarchy, test 

sequences as transient objects
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Current Activities of the WG

• Made UVM SystemC reference implementation available on GitHub 
since May 2025
– https://github.com/accellera-official/uvm-systemc 

– Includes regression tests (based on UVM SystemVerilog tests)

• Creation of the Language Reference Manual for UVM SystemC 1.0
– Goal: release the LRM by end of 2025

• Update reference implementation to be in sync with 1.0 release

• Switch compile flow to CMake

• Integrate github actions for CI flow

• Work on issues and feedback provided by users
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Call for Participation

• How can you help the working group?

• Download and use Libraries
– https://github.com/accellera-official/uvm-systemc 

– https://github.com/accellera-official/crave 

– https://github.com/accellera-official/fc4sc 

• Provide Feedback using GitHub
– Feature requests, bugs, usability issues, API problems

• Contribute Code through pull requests (Apache 
2.0 license)

• Join the working group (Accellera Members)
– Meetings twice a month on Wednesday
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A SystemC-UVM testbench for 
a student lab exercise

Jens Schönherr, HTW Dresden

Thilo Vörtler, COSEDA Technologies GmbH
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Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is 
granted by Jens Schönherr, HTW Dresden to use this material in 
developing all future revisions and editions of the resulting draft and 
approved Accellera Systems Initiative SystemC standard, and in 
derivative works based on the standard.
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Outline

• Introduction – Motivation

• Structure of testbench

• Experiences

• Future work
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Boundary conditions

• lecture “Test and Verification” (6th semester bachelor)

– simulation techniques/testbenches/formal verification/IC test

– with some lab exercises and a computer project

• lab exercise “Directed and constraint random simulation” (3 h)

– directed test with VHDL

– directed test with UVM (SystemC)

– constraint random test with UVM (SystemC)

– creation of UVM testbench takes too long

– testbench given, students create directed test and parameterize constraint 
random test to achieve coverage goal
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Motivation

• Why verification in lectures?

– industry need

• Why SystemC-UVM?

– UVM is industry standard (SystemVerilog/e/SystemC)

– students: C/C++, Matlab, Python, VHDL, … and SystemVerilog or e?

– SystemC well documented (online, books)

– source code available

– tool costs
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DUT – synchronous FIFO
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sc_main()
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Tests
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Random sequences

© Accellera Systems Initiative 15

top_virt_sequence

clr_agent_env*

rd_agent_env*

wr_agent_env*

random_engine i < len

yes

no

SC_FORK
create *_dflt_seq.

set params

set ref. to random_engine

i = 0

i = i + 1

top_virtual_sequence::body()

return

seq→start()

run_*_dflt_seq()

set rand. params

return

SC_JOIN

run_clr_dflt_seq() run_rd_dflt_seq() run_wr_dflt_seq()

random parameters are copied:

    member of top_virt_sequence

→ sequence

frequency/likelihood of en=1

SC_FORK
  sc_spawn(sc_bind(&top_virt_sequence::run_clr_dflt_seq, this)),
  sc_spawn(sc_bind(&top_virt_sequence::run_wr_dflt_seq,  this)),
  sc_spawn(sc_bind(&top_virt_sequence::run_rd_dflt_seq,  this)),
SC_JOIN

destroy(seq)



Creating random transaction
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Directed sequences
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Creating directed transaction

© Accellera Systems Initiative 18

clr_dir_seq

value

clr_dir_seq::body()

create req, rsp

start_item()

set req params (copy of sequence)

finish_item()

get rsp

destroy req, rsp

return

driver



Scoreboard
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Performance
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Crave - enhancements
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Crave

• parameters of random generation set in class definition by literal 
numbers

– not in virtual sequence

– use header file
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top_virtual_sequence_cfg.h:

// likelihood of clear
#define clr_en_lh 5

// likelihood of read
#define rd_en_lh 60

// likelihood of write
#define wr_en_lh 65

fifo_clr_agent_fifo_clr_tx.h:

class fifo_clr_agent_fifo_clr_tx:
  public uvm_randomized_sequence_item
{
  …
  crave::crv_variable< sc_dt::sc_uint<1> > en;
  sc_core::sc_time   start_time;
  sc_core::sc_time   end_time;

  crave::crv_constraint c_en_arb{ crave::dist(en(),
    crave::make_distribution(
      crave::weighted_range<unsigned>(0, 0, 100-clr_en_lh),
      crave::weighted_range<unsigned>(1, 1, clr_en_lh) ))};



Conclusion

• first working version of the UVM SystemC testbench in field

• coverage measurement by fc4sc → needs patches

next steps

• development of a tutorial for students using Coside testbench generation for 
FIFO

• feedback from community for good practice
– testbench structure (3 vs. 1 agent)

– how to realize generation/scoreboard/coverage

– crave: yes or no

• development of VIP for standard interfaces (UART/SPI/I2C etc.) for student 
projects
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