
Overview: Accellera SystemC Verification
Working Group activities

Thilo Vörtler, COSEDA Technologies GmbH

Accellera SystemC VWG Chair

© Accellera Systems Initiative 1

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Thilo Vörtler, COSEDA Technologies to use this material in
developing all future revisions and editions of the resulting draft and
approved Accellera Systems Initiative SystemC standard, and in
derivative works based on the standard.

© Accellera Systems Initiative 2

Introduction

• The VWG is responsible for defining verification
extensions to the SystemC language standard

• Main focus is the development of UVM in SystemC

• VWG provides proof of concept implementation,
creates the UVM SystemC standard Language
Reference Manual

• Support for Constraint Randomization and
functional Coverage by donated Libraries:
– CRAVE - Constrained Random Verification Environment

– FC4SC - Functional Coverage for SystemC

© Accellera Systems Initiative 3

Testbench (env) config

Test config
default
sequence

…..
agent

UVC1 (env)

MonDrv

Sqr

agent

UVC2 (env)

MonDrv

Sqrconf

virtual
sequencer

scoreboard

Subscr
2

ref
model

Subscr
1

conf

UVM in SystemC
• Methodology to create modular, scalable,

configurable and reusable System Level
testbenches

• Follows the UVM-SystemVerilog Standardized API
– Similar class definitions, methods and other

definitions in the LRM
– Divergence where SystemC and C++ already offer

solutions
– Stricter with regards to non-LRM API

• Complies with SystemC IEEE 1666-2023 standard
and SystemC 3.0.x reference implementation
– Follow SystemC-defined TLM1 and TLM2

communication mechanism
– SystemC modules capture testbench hierarchy, test

sequences as transient objects

© Accellera Systems Initiative 4

policies, phasing,

https://systemc.org/overview/systemc-verification/

https://systemc.org/overview/systemc-verification/

Current Activities of the WG

• Made UVM SystemC reference implementation available on GitHub
since May 2025
– https://github.com/accellera-official/uvm-systemc

– Includes regression tests (based on UVM SystemVerilog tests)

• Creation of the Language Reference Manual for UVM SystemC 1.0
– Goal: release the LRM by end of 2025

• Update reference implementation to be in sync with 1.0 release

• Switch compile flow to CMake

• Integrate github actions for CI flow

• Work on issues and feedback provided by users

© Accellera Systems Initiative 5

https://github.com/accellera-official/uvm-systemc

Call for Participation

• How can you help the working group?

• Download and use Libraries
– https://github.com/accellera-official/uvm-systemc

– https://github.com/accellera-official/crave

– https://github.com/accellera-official/fc4sc

• Provide Feedback using GitHub
– Feature requests, bugs, usability issues, API problems

• Contribute Code through pull requests (Apache
2.0 license)

• Join the working group (Accellera Members)
– Meetings twice a month on Wednesday

© Accellera Systems Initiative 6

https://github.com/accellera-official/uvm-systemc
https://github.com/accellera-official/crave
https://github.com/accellera-official/fc4sc

A SystemC-UVM testbench for
a student lab exercise

Jens Schönherr, HTW Dresden

Thilo Vörtler, COSEDA Technologies GmbH

© Accellera Systems Initiative 7

Copyright Permission

• A non-exclusive, irrevocable, royalty-free copyright permission is
granted by Jens Schönherr, HTW Dresden to use this material in
developing all future revisions and editions of the resulting draft and
approved Accellera Systems Initiative SystemC standard, and in
derivative works based on the standard.

© Accellera Systems Initiative 8

Outline

• Introduction – Motivation

• Structure of testbench

• Experiences

• Future work

© Accellera Systems Initiative 9

Boundary conditions

• lecture “Test and Verification” (6th semester bachelor)

– simulation techniques/testbenches/formal verification/IC test

– with some lab exercises and a computer project

• lab exercise “Directed and constraint random simulation” (3 h)

– directed test with VHDL

– directed test with UVM (SystemC)

– constraint random test with UVM (SystemC)

– creation of UVM testbench takes too long

– testbench given, students create directed test and parameterize constraint
random test to achieve coverage goal

© Accellera Systems Initiative 10

Motivation

• Why verification in lectures?

– industry need

• Why SystemC-UVM?

– UVM is industry standard (SystemVerilog/e/SystemC)

– students: C/C++, Matlab, Python, VHDL, … and SystemVerilog or e?

– SystemC well documented (online, books)

– source code available

– tool costs

© Accellera Systems Initiative 11

DUT – synchronous FIFO

© Accellera Systems Initiative 12

sfifo

wr_en_i

wr_data_i

wr_full_o

rd_en_i

rd_data_o

rd_empty_o

wr_full_o

wr_en_i

wr_data_i

clk_i

wd

rd_empty_o

rd_en_i

rd_data_o

clk_i

rd

clk_i

clr_i

rst_n_i

sc_main()

© Accellera Systems Initiative 13

stim_clk_rst

DUT

clk

clr_agent_vif

clr

clk

wr_agent_vif

wr_en

wr_data

wr_full

clk

rd_agent_vif

rd_en

rd_data

rd_empty

clk2 clk1 clk3rst_n

signals in vif

(virtual interfaces)

generates reset and

synchronous clocks

3 agents because random inputs

are generated independently

Tests

© Accellera Systems Initiative 14

top_test_base

top_env

scoreboard

run_phase()

clr_agent_env

top_test_directed with same structure

clr_agent_cfg_env

top_config

reference to

*vif

*is_active

…

top_virt_sequence

clr_agent_cfg

clr_agent_agent

clr_agent_cfg

clr_driver

clr_monitor

clr_sequencer

rd_agent_env

rd_agent_cfg_env

rd_agent_cfg

rd_agent_agent

rd_agent_cfg

rd_driver

rd_monitor

rd_sequencer

wr_agent_env

wr_agent_cfg_env

wr_agent_cfg

wr_agent_agent

wr_agent_cfg

wr_driver

wr_monitor

wr_sequencer

Random sequences

© Accellera Systems Initiative 15

top_virt_sequence

clr_agent_env*

rd_agent_env*

wr_agent_env*

random_engine i < len

yes

no

SC_FORK
create *_dflt_seq.

set params

set ref. to random_engine

i = 0

i = i + 1

top_virtual_sequence::body()

return

seq→start()

run_*_dflt_seq()

set rand. params

return

SC_JOIN

run_clr_dflt_seq() run_rd_dflt_seq() run_wr_dflt_seq()

random parameters are copied:

 member of top_virt_sequence

→ sequence

frequency/likelihood of en=1

SC_FORK
 sc_spawn(sc_bind(&top_virt_sequence::run_clr_dflt_seq, this)),
 sc_spawn(sc_bind(&top_virt_sequence::run_wr_dflt_seq, this)),
 sc_spawn(sc_bind(&top_virt_sequence::run_rd_dflt_seq, this)),
SC_JOIN

destroy(seq)

Creating random transaction

© Accellera Systems Initiative 16

clr_dflt_seq

params for random

random_engine

clr_dflt_seq::body()

create req, rsp

start_item()

set req params by random engine

finish_item()

get rsp

destroy req, rsp

return

driver

Directed sequences

© Accellera Systems Initiative 17

top_virt_sequence_dir

clr_agent_env*

rd_agent_env*

wr_agent_env*
i < len

yes

no

SC_FORK

create *_dir_seq.

set values

i = 0

i = i + 1

top_virt_sequence_dir::body()

return

seq→start()

run_*_dir_seq()

fill container

return

SC_JOIN

run_clr_dir_seq()

run_rd_dir_seq()

run_wr_ dir_seq()

next value from container:

clr_en, rd_en, wr_en, wr_data

values are copied:

 container

→ member of top_virt_sequence_dir

→ sequence

destroy(seq)

Creating directed transaction

© Accellera Systems Initiative 18

clr_dir_seq

value

clr_dir_seq::body()

create req, rsp

start_item()

set req params (copy of sequence)

finish_item()

get rsp

destroy req, rsp

return

driver

Scoreboard

© Accellera Systems Initiative 19

check_clr()

check_rd()

check_wr()

collect items in a class

→ one object per time

→ rsp contains time (set in monitor)

→ each monitor one rsp per clock cycle

process_tx()

sample data for coverage (fc4sc)

compare with reference model

if deviation

report coverage

UVM_FATAL()

report_phase()

report coverage

Performance

© Accellera Systems Initiative 20

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0 100000 200000 300000 400000

Memory consumption

w/o crave

w/ crave

0

50

100

150

200

250

300

350

400

450

0 100000 200000 300000 400000

Computation time / s

w/o crave

w/ crave

Why increasing? Leak?

length of sequence

length of sequence

Crave - enhancements

© Accellera Systems Initiative 21

0

100

200

300

400

500

600

700

0 5000 10000 15000

Computation time / s

w/ crave

w/ crave and
handle

0

50000

100000

150000

200000

250000

300000

0 5000 10000 15000

Memory consumption

w/ crave

w/ crave and handle

use handle object for random sequence items →

random item is allocated and deleted exactly one time [Thilo Voertler]

length of sequencelength of sequence

Crave

• parameters of random generation set in class definition by literal
numbers

– not in virtual sequence

– use header file

© Accellera Systems Initiative 22

top_virtual_sequence_cfg.h:

// likelihood of clear
#define clr_en_lh 5

// likelihood of read
#define rd_en_lh 60

// likelihood of write
#define wr_en_lh 65

fifo_clr_agent_fifo_clr_tx.h:

class fifo_clr_agent_fifo_clr_tx:
 public uvm_randomized_sequence_item
{
 …
 crave::crv_variable< sc_dt::sc_uint<1> > en;
 sc_core::sc_time start_time;
 sc_core::sc_time end_time;

 crave::crv_constraint c_en_arb{ crave::dist(en(),
 crave::make_distribution(
 crave::weighted_range<unsigned>(0, 0, 100-clr_en_lh),
 crave::weighted_range<unsigned>(1, 1, clr_en_lh)))};

Conclusion

• first working version of the UVM SystemC testbench in field

• coverage measurement by fc4sc → needs patches

next steps

• development of a tutorial for students using Coside testbench generation for
FIFO

• feedback from community for good practice
– testbench structure (3 vs. 1 agent)

– how to realize generation/scoreboard/coverage

– crave: yes or no

• development of VIP for standard interfaces (UART/SPI/I2C etc.) for student
projects

© Accellera Systems Initiative 23

	Slide 1: Overview: Accellera SystemC Verification Working Group activities
	Slide 2: Copyright Permission
	Slide 3: Introduction
	Slide 4: UVM in SystemC
	Slide 5: Current Activities of the WG
	Slide 6: Call for Participation
	Slide 7: A SystemC-UVM testbench for a student lab exercise
	Slide 8: Copyright Permission
	Slide 9: Outline
	Slide 10: Boundary conditions
	Slide 11: Motivation
	Slide 12: DUT – synchronous FIFO
	Slide 13: sc_main()
	Slide 14: Tests
	Slide 15: Random sequences
	Slide 16: Creating random transaction
	Slide 17: Directed sequences
	Slide 18: Creating directed transaction
	Slide 19: Scoreboard
	Slide 20: Performance
	Slide 21: Crave - enhancements
	Slide 22: Crave
	Slide 23: Conclusion

