
Daniel Große, Andreas Hinterdorfer, Manfred Schlägl
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: daniel.grosse@jku.at

Bringing CHERI Capabilities to Life in a
Virtual Platform: CHERI-RISC-V VP++

2

Table of Contents

• Motivation

• Simple Example

• CHERI

• RISC-V VP++

• Implementation of CHERI-RISC-V VP++

• Verification of CHERI-RISC-V VP++

• Complex Examples on CHERI-RISC-V VP++

• Conclusion

3

Motivation

• Memory safety issues cause majority

of security vulnerabilities

◦ Buffer overflows

◦ Use-after-free

• Software mitigations are partial and costly

• Need: hardware-supported memory safety

• Solution: CHERI

4

CHERI Evaluation Platforms

• Very slow

• Deterministic

• Cycle-accurate

• High Observability

• Running software

basically impossible

RTL-Simulation

• Fast

• Nondeterministic

• Not cycle-accurate

• Hard to inspect

hardware model

• Can run entire OS

Emulation (QEMU)Virtual Prototypes

• Faster than RTL

• Deterministic

• Cycle-Approximate

• High Observability

• Can run entire OS

5

Goals of This Work

• Observable hardware simulation

• CHERI-enabled VP
◦ Extension of existing VP

• Running CHERI-enabled software on VP

• Early software development

• Design space exploration

• Security analysis

6

Simple Example

1 int main() {
2 int32_t array[5] = {0};
3 uint64_t length = sizeof(array) / sizeof(array[0]);
4 int32_t ∗p_array = array;
5 // Intended read over the bounds
6 for (uint32_t i = 0; i <= length + 5; i++) {
7 printf("Count:␣%d,␣Value:␣%d\n", i, ∗(p_array + i));
8 }
9 return 0;
10 }

7

Simple Example – CHERI?

No-CHERI

Count: 0, Value: 0
Count: 1, Value: 0
Count: 2, Value: 0
Count: 3, Value: 0
Count: 4, Value: 0
Count: 5, Value: 5
Count: 6, Value: 0
Count: 7, Value: 0
Count: 8, Value: 33554364
Count: 9, Value: 9
Count: 10, Value: 5

Count: 0, Value: 0
Count: 1, Value: 0
Count: 2, Value: 0
Count: 3, Value: 0
Count: 4, Value: 0
CHERI Exception: LengthViolation

CHERI

8

CHERI –
Capability Hardware Enhanced RISC Instructions

• Hardware-based approach

• Developed by the University of Cambridge in 2010

• Increase Memory Safety of RISC processors

• Extension of existing ISAs

• ISA independent
◦ RISC-V

◦ MIPS

◦ ARM (Morello)

◦ x86

• Large ecosystem available

9

Capabilities

• Capabilities are an architectural primitive that compilers, systems software, and applications

use to constrain their own future execution

• Capabilities extend integer memory addresses (now 128 bit)

• Metadata (bounds, permissions, …) control how it may be used

• Tags protect capability integrity/derivation in registers + memory

10

Capabilities

• Encoding of base and top

• Compression algorithm

(relative to address)

11

Capabilities

• Flag

• Required in Hybrid-Mode (CHERI aware and legacy code can run side by side)

12

Capabilities

• Reserved

13

Capabilities

• Unsealed capabilities
◦ Idea: An unsealed capability is an unlocked pointer that can be used, changed, or accessed freely within

its allowed permissions

◦ Data capabilities

• Sealed capabilities
◦ Idea: A sealed capability is a locked pointer that cannot be used or changed until it is unlocked with the

correct key, ensuring secure and controlled access

◦ Immutable

◦ E.g. for jump-targets

14

Capabilities

• Memory access: load/store data and capabilities

• Control flow: execute, invoke capabilities

• Sealing: seal and unseal capabilities

• System: set CIDs, access system registers

• Scope: global vs. local

15

Capabilities

• Out-of-band: stored separately from normal data

• Atomically bound to capability

• Validates capability

16

CHERI: Consequences for Hardware

• General purpose registers become 129 bit (64 bit address + 64 bit metadata + 1 bit validity tag)

• Program counter also extended w capability

• Tagged memory protects capability-sized and -aligned words in DRAM by adding validity tag

• ISA is extended with CHERI instructions

• ISA instructions enforce monotonicity and guarded manipulation

17

RISC-V VP++

Extensible and configurable
SystemC based, open-source RISC-V virtual prototype

• RISC-V 32 & 64 bit single/multi-core

◦ Fast Interpreter-Based ISS → up to 406 MIPS

◦ Vector Extension (RVV) version 1.0

• Small uC based systems (e.g. bare metal SW, RTOS)

• Complex application processor based systems

with virtual memory, graphics, network … (e.g. Linux)

→ https://github.com/ics-jku/riscv-vp-plusplus.git

https://github.com/ics-jku/riscv-vp-plusplus.git

18

Some RISC-V VP++ publications

VP Model
•Fast interpreter-based instruction set simulation for virtual prototypes (DATE 2025)

•A RISC-V “V” VP: Unlocking Vector Processing for Evaluation at the System Level (DATE 2024)

•RISC-V VP++: Next generation open-source virtual prototype (OSDA 2024)

•GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling interactive graphical application development

(GLSVLSI 2023)

Verification

•LLM-assisted metamorphic testing of embedded graphics libraries (FDL 2025)

•ProtoLens: dynamic transaction visualization in virtual prototypes (FDL 2025)

Single instruction isolation for RISC-V vector test failures (ICCAD 2024)

•Using virtual prototypes and metamorphic testing to verify the hardware/software-stack of embedded graphics

libraries. (Integration 2025)

•Boosting SW development efficiency with function lifetime diagrams (DDECS 2025)

•Relation coverage: A new paradigm for hardware/software testing (ETS 2024)

•Verifying embedded graphics libraries leveraging virtual prototypes and metamorphic testing (ASP-DAC 2024)

https://ics.jku.at/files/2025DATE_Fast_Interpreter-based_ISS.pdf
https://ics.jku.at/files/2024DATE_RISCV-VP-plusplus_RVV.pdf
https://ics.jku.at/files/2024OSDA_RISCV-VP-plusplus.pdf
https://ics.jku.at/files/2023GLSVLSI_GUI-VP_Kit.pdf
https://ics.jku.at/files/2025FDL_LLM-assisted_Metamorphic_Testing_of_Embedded_Graphics_Libraries.pdf
https://ics.jku.at/files/2025FDL_ProtoLens.pdf
https://ics.jku.at/files/2024ICCAD_Single-Instruction-Isolation-for-RISC-V-Vector-Test-Failures.pdf
http://dx.doi.org/10.1016/j.vlsi.2024.102320
https://ics.jku.at/files/2025DDECS_FunctionLifetimeDiagram.pdf
https://ics.jku.at/files/2024ETS_relation-coverage.pdf
https://ics.jku.at/files/2024ASPDAC_Verifying_Embedded_Graphics_Libraries_leveraging_VPs_and_MT.pdf

19

RISC-V VP++

20

CHERI-RISC-V VP++

21

Reading beyond bounds – Source code

1 int main() {
2 int32_t array[5] = {0};
3 uint64_t length = sizeof(array) / sizeof(array[0]);
4 int32_t ∗p_array = array;
5 // Intended read over the bounds
6 for (uint32_t i = 0; i <= length + 5; i++) {
7 printf("Count:␣%d,␣Value:␣%d\n", i, ∗(p_array + i));
8 }
9 return 0;
10 }

22

Reading beyond bounds - Output

No-CHERI

Count: 0, Value: 0
Count: 1, Value: 0
Count: 2, Value: 0
Count: 3, Value: 0
Count: 4, Value: 0
Count: 5, Value: 5
Count: 6, Value: 0
Count: 7, Value: 0
Count: 8, Value: 33554364
Count: 9, Value: 9
Count: 10, Value: 5

Count: 0, Value: 0
Count: 1, Value: 0
Count: 2, Value: 0
Count: 3, Value: 0
Count: 4, Value: 0
CHERI Exception: LengthViolation

CHERI

23

Reading beyond bounds – Source code

1 int main() {
2 int32_t array[5] = {0};
3 uint64_t length = sizeof(array) / sizeof(array[0]);
4 int32_t ∗p_array = array; // Capability pointing to array
5 // Intended read over the bounds
6 for (uint32_t i = 0; i <= length + 5; i++) {
7 printf("Count:␣%d,␣Value:␣%d\n", i, ∗(p_array + i));
8 }
9 return 0;
10 }

24

Reading beyond bounds – Details

1 int main() {

2 int32_t array[5] = {0};

3 int32_t ∗p_array = array;

4 // Intended read over the bounds

5 for (uint32_t i = 0; i <= 10; i++) {

6 int32_t b = *(p_array + i)

7 }

8 return 0;

9 }

cincoffset ca0, cs0, -56
csetbounds ca0, ca0, 20
csc ca0, -112(cs0)

clc ca0, -112(cs0)
csc ca0, -80(cs0)

clc ca0, -80(cs0)
clwu a1, -84(cs0) # i
slli a1, a1, 2 # *4
cincoffset ca0, ca0, a1
clw a0, 0(ca0)
csw a0, -88(cs0)

Capability{
Addr: 0x9FFFFFB8
Base: 0x9FFFFFB8
Top:0x9FFFFFCC

}
… stored to address 0x9FFFFF80

Loaded Capability from address 0x9FFFFF80
Stored to address 0x9FFFFFA0:
Capability{

Addr: 0x9FFFFFB8
Base: 0x9FFFFFB8
Top:0x9FFFFFCC

}

Loaded Capability from
address 0x9FFFFFA0

CHERI Exception: LengthViolation
Capability{

Addr: 0x9FFFFFCC
Base: 0x9FFFFFB8
Top: 0x9FFFFFCC

}

addr + size <= top

capability load word from given address:

array element is loaded into a0 if bound check passes

25

TLM TagExtension - Concept

• Purpose: Implements a custom extension for SystemC/TLM to support tagged data

• Class Definition: `TagExtension` inherits from `tlm::tlm_extension`

• Key Features:
◦ Holds a single Boolean `tag` value to represent validity of a capability

• Integration:
◦ Appended by our CHERI-enabled ISS to `tlm_generic_payload` to enable transport of tags alongside data

◦ Ensures backward compatibility: Non-CHERI-aware modules ignore the extension and operate as usual

• Code Simplicity:
◦ Minimal implementation, focusing on extending functionality w/o altering the TLM bus

• No modification to SystemC necessary!

26

TLM TagExtension - Code

struct TagExtension : tlm::tlm_extension<TagExtension>
{

bool tag;
TagExtension(bool t)
{

tag = t;
}

tlm::tlm_extension_base∗ clone() const override
{

return new TagExtension(∗this);
}

void copy_from(tlm::tlm_extension_base const &ext) override
{

tag = static_cast<TagExtension const &>(ext).tag;
}

};

27

TLM TagExtension - Usage

inline void _do_transaction(tlm::tlm_command cmd, uint64_t addr, uint8_t∗ data,
bool∗ p_tag, unsigned num_bytes)

{
tlm::tlm_generic_payload trans;
trans.set_command(cmd);
trans.set_address(addr);
trans.set_data_ptr(data);
trans.set_data_length(num_bytes);
trans.set_response_status(tlm::TLM_OK_RESPONSE);

auto∗ ext = new TagExtension(∗p_tag); // set current tag value
trans.set_extension(ext);

sc_core::sc_time local_delay = quantum_keeper.get_local_time();
isock−>b_transport(trans, local_delay); // bus access

trans.get_extension(ext); // get updated tag value
∗p_tag = ext−>tag;

}

28

TestRIG

29

TestRIG Results

• Test Cases Executed:

2+ million test cases run across various categories, including CHERI-specific extensions

• Instruction Coverage:

Executed 1.8+ billion instructions, averaging 860 instructions per test case

• Code Coverage:

Relevant CHERI-related code coverage: High, with most critical lines tested

• Planned:

◦ Adapt RVVTS (ICCAD 2024) for CHERI-RISC-V VP++

30

Booting CheriBSD on CHERI-RISC-V VP++

• CHERI-enabled FreeBSD

◦ Full-scale general purpose OS

◦ Unix-like

• Boots in 25 seconds

◦ > 300 million instructions

◦ 20 million data loads

◦ 60 million data stores

◦ 600 thousand capabilities stored

• File system, multitasking and networking supported

• CHERI memory protection enforced

31

CheriBSD Reading beyound bounds

./read_beyound_bounds

Count: 0, Value: 0

Count: 1, Value: 0

Count: 2, Value: 0

Count: 3, Value: 0

Count: 4, Value: 0

In−address space security exception (core dumped)

Operating system kills the program, but system still runs!

32

Conclusion

• Extension of RISC-V VP++ with CHERI

• Easy integration of tagged memory architecture using SystemC TLM transaction extension

mechanism

• Verification of CHERI-RISC-V VP++ w TestRIG

• Bare-metal software on CHERI-RISC-V VP++

• Booting CheriBSD on CHERI-RISC-V VP++

• Very promising results

• Stay tuned:

◦ Open-source GitHub soon available

◦ ASP-DAC 2026 paper

Daniel Große, Andreas Hinterdorfer, Manfred Schlägl
Institute for Complex Systems (ICS)

Web: jku.at/ics

Email: daniel.grosse@jku.at

Bringing CHERI Capabilities to Life in a
Virtual Platform: CHERI-RISC-V VP++

