Bringing CHERI Capabilities to Life in a
Virtual Platform: CHERI-RISC-V VP++

'SYSTEMZOC

Daniel Grol3e, Andreas Hinterdorfer, Manfred Schlag|

Institute for Complex Systems (ICS) EVOLUTION DAY
W oF || UHEHES | 0CT 16, 2025 | MUNICH | GERMANY
Email: daniel.grosse @jku.at

J z JOHANNES KEPLER

UNIVERSITY LINZ

Table of Contents

Motivation

Simple Example

CHERI

RISC-V VP++

Implementation of CHERI-RISC-V VP++
Verification of CHERI-RISC-V VP++
Complex Examples on CHERI-RISC-V VP++

Conclusion

J z JOHANNES KEPLER
UNIVERSITY LINZ

Motivation

* Memory safety issues cause majority
of security vulnerabilities
o Buffer overflows :
o Use-after-free Use-after-free

e Software mitigations are partial and costly
* Need: hardware-supported memory safety

* Solution: CHERI

J z JOHANNES KEPLER
UNIVERSITY LINZ

CHERI Evaluation Platforms

RTL-Simulation Virtual Prototypes Emulation (QEMU)
* Very slow * Faster than RTL * Fast

* Deterministic « Deterministic * Nondeterministic

* Cycle-accurate « Cycle-Approximate * Not cycle-accurate

* High Observability « High Observability * Hard to inspect

hardware model
Can run entire OS * Canrun entire OS

Running software
basically impossible

J z JOHANNES KEPLER
UNIVERSITY LINZ

Goals of This Work

Observable hardware simulation

CHERI-enabled VP
o Extension of existing VP

Running CHERI-enabled software on VP

Early software development
* Design space exploration
* Security analysis

J z JOHANNES KEPLER
UNIVERSITY LINZ

Simple Example

int main() {
int32_t array[5] = {0};
uint64_t length = sizeof(array) / sizeof(array[0]);
int32_t *p_array = array;
// Intended read over the bounds
for (uint32 t i = 0; i <= length + 5; i++) {

printf("Count: __%d, . Value:_ %d\n", i, *(p_array + 1i));

}

return 0;

J z JOHANNES KEPLER
UNIVERSITY LINZ

JXY

No-CHERI

Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:

Q)
o o o o

o

]]]

OLoOoONOOUVTE WN PR
o

]

=
Q)
o

Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:

JOHANNES KEPLER
UNIVERSITY LINZ

U1l O WO OUTOOOOOO o

Simple Example - CHERI?

3554364

CHERI

Count:
Count:
Count:
Count:
Count:

Value:
Value:
Value:
Value:
4, Value:
CHERI Exception:

OO OO0

LengthViolation

CHERI -

Capability Hardware Enhanced RISC Instructions

* Hardware-based approach

Developed by the University of Cambridge in 2010
* Increase Memory Safety of RISC processors
* Extension of existing ISAs

ISA independent
° RISC-V

° MIPS

° ARM (Morello)

° x86

Large ecosystem available

J z JOHANNES KEPLER
UNIVERSITY LINZ

Technical Report

Number 941

BB UNIVERSITY OF
€¥ CAMBRIDGE

Computer Laboratory

An Introduction to CHERI

Robert N. M. Watson, Simon W. Moore,
Peter Sewell, Peter G. Neumann

September 2019

Capabilities

Capabilities are an architectural primitive that compilers, systems software, and applications
use to constrain their own future execution

Capabilities extend integer memory addresses (now 128 bit)

Metadata (bounds, permissions, ...) control how it may be used

Tags protect capability integrity/derivation in registers + memory

63 48 47 30 29 28 27 26 25 14 13

permissions object type R [Fllg B T

=
= address

64

J z U JOHANNES KEPLER
UNIVERSITY LINZ

Capabilities

63 48 47

30 29 28 2femledo

14 .12 [a]

permissions

object type

R

i

Ie

Tag

address

* Encoding of base and top

* Compression algorithm
(relative to address)

J z JOHANNES KEPLER
UNIVERSITY LINZ

64

10

Capabilities

63 48 47 30 29 28 llee?6 25 1413

permissions object type R I F IE B

Tag

address

64

* Flag
* Required in Hybrid-Mode (CHERI aware and legacy code can run side by side)

J z JOHANNES KEPLER
UNIVERSITY LINZ

Capabilities

63 48 47 30 gt B’ 7 26 25 14 13
> permissions object type I R I= I B
= address
64
* Reserved

J z JOHANNES KEPLER
UNIVERSITY LINZ

Capabilities

63 v S0 28 27 26 25 14 13 0

permissions I object type I R |F|lg B T

Tag

addres-:s

64

* Unsealed capabilities
° |dea: An unsealed capability is an unlocked pointer that can be used, changed, or accessed freely within
its allowed permissions
o Data capabilities

* Sealed capabilities
° |dea: A sealed capability is a locked pointer that cannot be used or changed until it is unlocked with the
correct key, ensuring secure and controlled access
° Immutable
° E.g. for jump-targets

J z JOHANNES KEPLER
UNIVERSITY LINZ 13

Capabilities

14 13

83 7 30 29 28 27 26 25
| permissions “1 object type R |F|lg

Tag

address

64

* Memory access: load/store data and capabilities
* Control flow: execute, invoke capabilities

* Sealing: seal and unseal capabilities

* System: set CIDs, access system registers

e Scope: global vs. local

J z JOHANNES KEPLER
UNIVERSITY LINZ

14

Capabilities

63 48 47 30 29 28 27 26 25

14 13

permissions object type R |F|lg

&
= address

64

* Qut-of-band: stored separately from normal data
e Atomically bound to capability
* Validates capability

J z JOHANNES KEPLER
UNIVERSITY LINZ

15

CHERI: Consequences for Hardware

General purpose registers become 129 bit (64 bit address + 64 bit metadata + 1 bit validity tag)

Program counter also extended w capability

Tagged memory protects capability-sized and -aligned words in DRAM by adding validity tag
ISA is extended with CHERI instructions
ISA instructions enforce monotonicity and guarded manipulation

J z JOHANNES KEPLER
UNIVERSITY LINZ 16

RISC-V VP++

Extensible and configurable
SystemC based, open-source RISC-V virtual prototype

* RISC-V 32 & 64 bit single/multi-core Lg ‘ I
° Fast Interpreter-Based ISS - up to 406 MIPS

° Vector Extension (RVV) version 1.0
* Small uC based systems (e.g. bare metal SW, RTOS)
o D¢
* Complex application processor based systems
with virtual memory, graphics, network ... (e.g. Linux)

= https://github.com/ics-jku/riscv-vp-plusplus.qit

J z JOHANNES KEPLER
UNIVERSITY LINZ 17

https://github.com/ics-jku/riscv-vp-plusplus.git

Some RISC-V VP++ publications

VP Model

*Fast interpreter-based instruction set simulation for virtual prototypes (DATE 2025)

*A RISC-V “V” VP: Unlocking Vector Processing for Evaluation at the System Level (DATE 2024)
*RISC-V VP++: Next generation open-source virtual prototype (OSDA 2024)

*GUI-VP Kit: A RISC-V VP meets Linux graphics - enabling interactive graphical application development
(GLSVLSI 2023)

Verification

L LM-assisted metamorphic testing of embedded graphics libraries (FDL 2025)

*ProtoLens: dynamic transaction visualization in virtual prototypes (FDL 2025)

Single instruction isolation for RISC-V vector test failures (ICCAD 2024)

*Using virtual prototypes and metamorphic testing to verify the hardware/software-stack of embedded graphics
libraries. (Integration 2025)

*Boosting SW development efficiency with function lifetime diagrams (DDECS 2025)

*Relation coverage: A new paradigm for hardware/software testing (ETS 2024)

*\Verifying embedded graphics libraries leveraging virtual prototypes and metamorphic testing (ASP-DAC 2024)

J z U JOHANNES KEPLER
UNIVERSITY LINZ 18

https://ics.jku.at/files/2025DATE_Fast_Interpreter-based_ISS.pdf
https://ics.jku.at/files/2024DATE_RISCV-VP-plusplus_RVV.pdf
https://ics.jku.at/files/2024OSDA_RISCV-VP-plusplus.pdf
https://ics.jku.at/files/2023GLSVLSI_GUI-VP_Kit.pdf
https://ics.jku.at/files/2025FDL_LLM-assisted_Metamorphic_Testing_of_Embedded_Graphics_Libraries.pdf
https://ics.jku.at/files/2025FDL_ProtoLens.pdf
https://ics.jku.at/files/2024ICCAD_Single-Instruction-Isolation-for-RISC-V-Vector-Test-Failures.pdf
http://dx.doi.org/10.1016/j.vlsi.2024.102320
https://ics.jku.at/files/2025DDECS_FunctionLifetimeDiagram.pdf
https://ics.jku.at/files/2024ETS_relation-coverage.pdf
https://ics.jku.at/files/2024ASPDAC_Verifying_Embedded_Graphics_Libraries_leveraging_VPs_and_MT.pdf

RISC-V VP++

JXY

DMI Access

Memory

|SS FACOSOO00CooO0000CODOo0000000o00000000 .Q.
(RV64 Core) :
Program Counter <& : R S
—» LSCache —%{DMem IF =
Decode/ MMU
General Purpose Registers <= Interpret/ : _
Execute |y [hpgcache = IMem IF —> TLB
Control & Status Registers < | | I """""
LM Transactionsi
TLM 2.0 Bus Memory Map
¢ ¢ * L. UART,
CLINT PLIC | Mass Storage,
Timer/SW Perivh | Framebuffer,
Interrupt Ext. Interrupts eripnerais| mouse,
pis Keyboard
Interrupts Network, ...

JOHANNES KEPLER
UNIVERSITY LINZ

19

CHERI-RISC-V VP++

JXY

ISS

(RV64 Core)

Capability

Program Counter

-

Capabilities

General Purpose Registers

-

Opcodes

Tagged IF

- |LSCache =% DMem IF —»

Decode/
=& |nterpret/

Execute —

DBBCache —» IMem IF —» LB

Capabilities Instruction
SCRs - E i
i Control & Status Registers < xecution
TLM Transactions
n
E TLM 2.0 Bus Memory Map —>
+ ¢ ¢ L. UART,
CLINT PLIC | Mass Storage,
Timer/SW Peripherals| o "
Interrupt Ext. Interrupts P Mouse,
pts Keyboard
Interrupts Netooard:

JOHANNES KEPLER

UNIVERSITY LINZ

DMl Access

v

Tagged
Memory

(2]
&
—

Unmodified

Modified

New

20

Reading beyond bounds - Source code

int main() {
int32_t array[5] = {0};
uint64_t length = sizeof(array) / sizeof(array[0]);
int32_t *p_array = array;
// Intended read over the bounds
for (uint32 t i = 9; i <= length + 5; i++) {

printf("Count: __%d, . Value:_ %d\n", i, *(p_array + 1i));

}

return 0;

J z JOHANNES KEPLER
UNIVERSITY LINZ

21

JXY

No-CHERI

Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:
Count:

Q)
o o o o

o

]]]

OLoOoONOOUVTE WN PR
o

]

=
Q)
o

Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:
Value:

JOHANNES KEPLER
UNIVERSITY LINZ

U1l O WO OUTOOOOOO o

Reading beyond bounds -

3554364

Output

CHERI

Count:
Count:
Count:
Count:
Count:

Value:
Value:
Value:
Value:
4, Value:
CHERI Exception:

OO OO0

LengthViolation

22

Reading beyond bounds - Source code

int main() {

JXY

int32_t array[5] = {0};

uint64_t length = sizeof(array) / sizeof(array[0]);

int32 t *xp_array = array; // Capability pointing to array

// Intended read over the bounds

for (uint32 t i = 0; i <= length + 5; i++) {
printf("Count: __%d, . Value:_ %d\n", i, *(p_array + 1i));

}

return 0;

JOHANNES KEPLER
UNIVERSITY LINZ

23

63 48 47 30 29 28 27 26 25 1413

permissions object type | R |F||E| B T

Tag

address

64

Reading beyond bounds - Details

int main() { cincoffset ca®, cso@, -56 Capability{
int32_t array[5] = {0}; »| csetbounds ca@, cao, 20 Addr: Ox9FFFFFB8
: — csc ca@, -112(cs0) R Base: Ox9FFFFFB8
int32_t *p_array = array; | Top:0x9FFFFFCC
// Intended read over the bounds P Eig Egg’ :%é%égg?) }
. . . . 2 . stored to address Ox9FFFFF80
for (uint32_t i = 9; i <= 10; i++) {
int32_t b = *(p_array + 1) Loaded Capability from address Ox9FFFFF80
} Stored to address Ox9FFFFFAQ:
Capability{
return ©; — il T »| Addr: @x9FFFFFB8
oaded Capabili rom .
) y ‘| address 059FFFFFX@ $2S?éxg§2EEEEEBS
clc ca@, -80(cs0) })
clwu al, '84(C59)*# 1 CHERI Exception: LengthVviolation
S:!.].l al, al, 2 # *4 Capability{
Icincoffset cad, caod, al ‘ Addr: OX9FFFEFCC W e ———
[cIu a0, 6(ca0)] | Base: @x9FFFFFBS - op
csw a6, -88(cs0) Top: @X9FFFFFCC N |
capability load word from given address:
}) : .
array element is loaded into a0 if bound check passes

J z JOHANNES KEPLER
UNIVERSITY LINZ 24

6 8 47 30 29 28 27 26 25 1413
- permissions object type | R |F||E| B T
C
= address

TLM TagExtension - Concept

Purpose: Implements a custom extension for SystemC/TLM to support tagged data

Class Definition: TagExtension inherits from tim::tlm_extension

Key Features:
° Holds a single Boolean ‘tag value to represent validity of a capability

Integration:
o Appended by our CHERI-enabled ISS to 'tim_generic_payload to enable transport of tags alongside data
° Ensures backward compatibility: Non-CHERI-aware modules ignore the extension and operate as usual

Code Simplicity:
o Minimal implementation, focusing on extending functionality w/o altering the TLM bus

No modification to SystemC necessary!

J z U JOHANNES KEPLER
UNIVERSITY LINZ 25

TLM TagExtension - Code

struct TagExtension : tlm::tlm_extension<TagExtension>

{

bool tag;
TagExtension(bool t)
tag = t;
}
tlm::tlm extension_basex clone() const override
{
return new TagExtension(xthis);
}

void copy from(tlm::tlm extension base const &ext) override

tag = static _cast<TagExtension const &>(ext).tag;

}
s

J z JOHANNES KEPLER
UNIVERSITY LINZ

TLM TagExtension - Usage

inline void _do transaction(tlm::tlm command cmd, uint64_t addr, uint8 tx data,
bool* p tag, unsigned num_bytes)
{

tlm::tlm _generic payload trans;

trans.set command(cmd);

trans.set address(addr);
trans.set data ptr(data);
trans.set data length(num_bytes);

trans.set response status(tlm::TLM OK _RESPONSE);

autox ext = new TagExtension(*p _tag); // set current tag value
trans.set extension(ext);

sc_core::sc_time local delay = quantum_keeper.get local time();
isock->b_transport(trans, local delay); // bus access

trans.get extension(ext); // get updated tag value
*p_tag = ext->tag;
}

J z JOHANNES KEPLER
UNIVERSITY LINZ 27

TestRIG

JXY

JOHANNES KEPLER
UNIVERSITY LINZ

Verification Engine (VEngine)

Consume Exection Traces Generate Instructions
\ 4 Y
Socket Socket
\ 4 \ 4
RISC-V RISC-V
Implementation Implementation
A B

28

TestRIG Results

Test Cases Executed:
2+ million test cases run across various categories, including CHERI-specific extensions

Instruction Coverage:
Executed 1.8+ billion instructions, averaging 860 instructions per test case

Code Coverage:
Relevant CHERI-related code coverage: High, with most critical lines tested

Planned:
o Adapt RVVTS (ICCAD 2024) for CHERI-RISC-V VP++

J z JOHANNES KEPLER
UNIVERSITY LINZ 29

Booting CheriBSD on CHERI-RISC-V VP++

CHERI-enabled FreeBSD
o Full-scale general purpose OS
° Unix-like

Boots in 25 seconds

o > 300 million instructions

o 20 million data loads

o 60 million data stores

° 600 thousand capabilities stored

File system, multitasking and networking supported

CHERI memory protection enforced

J z JOHANNES KEPLER
UNIVERSITY LINZ 30

CheriBSD Reading beyound bounds

./read_beyound bounds
Count: O, Value: ©

Count: 1, Value:
Count: 2, Value:
Count: 3, Value:
Count: 4, Value:
In-address space security exception (core dumped)
#

OO0 00

Operating system kills the program, but system still runs!

J z JOHANNES KEPLER
UNIVERSITY LINZ

Conclusion

Extension of RISC-V VP++ with CHERI

Easy integration of tagged memory architecture using SystemC TLM transaction extension
mechanism

Verification of CHERI-RISC-V VP++ w TestRIG
Bare-metal software on CHERI-RISC-V VP++
Booting CheriBSD on CHERI-RISC-V VP++
Very promising results

Stay tuned:
o Open-source GitHub soon available
o ASP-DAC 2026 paper

J z JOHANNES KEPLER
UNIVERSITY LINZ

Bringing CHERI Capabilities to Life in a
Virtual Platform: CHERI-RISC-V VP++

'SYSTEMZOC

Daniel Grol3e, Andreas Hinterdorfer, Manfred Schlag|

Institute for Complex Systems (ICS) EVOLUTION DAY
W oF || UHEHES | 0CT 16, 2025 | MUNICH | GERMANY
Email: daniel.grosse @jku.at

J z JOHANNES KEPLER

UNIVERSITY LINZ

