
FSS : A proposal

Federating Simulation

• Systems of Systems.... To simulate real world (Digital twins?) we need
to combine many simulators together

• No one simulator does it all

• But each simulator has different interfaces, and attempts to get them
to play nicely seem to be use case specific

• We need a way to connect simulators together

FSS goal

config statustime

QQVP

Matlab
Engine model

Carla environment
model

Silkit

Qbox

FMI/FMU

Python
Sensor

Accelerator

Camera Model

NOC/Bus
Ethernet

Ethernet

steering
i2c

SPI

VirtMSG/
vsock/
virtnet?

QNN
LIDAR

Adaptive
AUTOSAR

re-
package

someip

connec
tivity

Interoperability interface needs to cover…
Sync

Config

Status (Simulation state)

Data

Control/inspection

Topology

FSS Interfaces : The proposal

Any node: Abstract
Interface

Transport
e.g. Zenoh/Silkit/…

Set / Get Config
(name JSON value)

Notify simulation states

Sync Time

Transfer Data

FS
S

st
an

d
ar

d

Topology

Control/Inspection

FSS Interfaces : A different proposal

Any node: Abstract
Interface

Transport
e.g. Zenoh/Silkit/…

Set / Get Config
(name JSON value)

Notify simulation states

Sync Time

Transfer Data

FS
S

st
an

d
ar

d

Topology

Control/Inspection

I don’t think this works because:
I don’t think we should specify the transport.

FSS Interfaces : The proposal

Any node: Abstract
Interface

Transport
e.g. Zenoh/Silkit/…

Set / Get Config
(name JSON value)

Notify simulation states

Sync Time

Transfer Data

FS
S

st
an

d
ar

d

Topology

Control/Inspection

An interface in 2 parts
• SIMPLE C API • Semantics held on a shared

public repository

typedef fssBusIfHandle

(*fssGetBusIfFnPtr)(fssBi

ndIFHandle bindIfHandle,

fssString name);

This Photo by Unknown Author is licensed under CC BY-SA

Name Meaning

Marks.foo.bus The special 33.5 bit foo bus
mark made

https://framablog.org/2013/03/11/github-generation/
https://creativecommons.org/licenses/by-sa/3.0/

An interface in 2 parts
• SIMPLE C API • Semantics held on a shared

public repository

typedef fssBusIfHandle

(*fssGetBusIfFnPtr)(fssBi

ndIFHandle bindIfHandle,

fssString name);

This Photo by Unknown Author is licensed under CC BY-SA

Name Meaning

Marks.foo.bus The special 33.5 bit foo bus
mark made

WIP:
• We Don’t currently have a repo for this
• Maybe we’ll need more than “name” and

“meaning”…
• Ideally I guess it would be nice if this was

machine readable?

https://framablog.org/2013/03/11/github-generation/
https://creativecommons.org/licenses/by-sa/3.0/

General rules (Arbitrary, must be fixed)

• All names to be pre-fixed with fully qualified hierarchical name

• All names to be pre-fixed with company name/abbreviation oh author
of the originator of the message

• All names to be postfixed with a message .type

• Hence:

• <company>@/foo/baa/harry/joe.sync

• All names searchable using regexp’s

Topologies

• Interfaces can be connected in any way

• Central controllers, or distributed networks

• Config databases, you may have one, or many

• Simulation events, everybody may be interested, or only 2
participants…

• Etc…

• All is expected to be driven by configuration, and the “Configurator”

The Top Level Component Assembler is
“Special” – just not very
• “You got to start somewhere”…

• The top level component assembler owns the top level configuration database and will
use that to populate the sub-modules.

• Description of overall platform will be populated into the configuration database.

• A top level assembler object will read the configuration database and build the
requested components

• Assembler will pre-populate much of the configuration database

• Assembler will provide “names” to nodes

Alternative approach…
Simulators could just ‘exist’ and find each other, and
connect.

Nice idea – but the reality is a PITA !

Start and stop each simulator independently? Yuk…
Surely half the reason for this standard is to have a
“standard” way of coordinating that!

Hierarchy of a federated simulation

Configurator

Node Nods

NodeNodeNode

Configurator
Node

Node

Node

Any ‘transport’

Node

Nodes

• Nodes may implement any/all of the interfaces.

• e.g. A Configurator implements the ‘config’
interface, and uses the ‘topology’ interfaces.

• Each node is connected to other nodes for
Configuration, Data, etc.

• Each node may expose many (hierarchical)
interfaces that can be “bound”

foo

bar

Config interface

“bar” data interface

Top level configurator scheme

Connect
topology

DLOpen

Connect to top
level config
database

The nature of the configuration database is up to the
configurator.

Configurator must provide the standard interface to
the database and provide that to the components

The configurator can then use the topology interface
to connect nodes.

Of course there may be other databases, and other
configurators within the system.

Morphology of the interface
Unashamedly borrowed from

FMI/FMU

In the beginning

Provides a (unique) name
Provides a configuration API
Gets back a ‘Bind interface’

fssExport fssBindIFHandle

fssCreateNode(fssString nodeName,

fssConfigIfHandle configIfHandle);

Configurator

Node.dll

fssCreateNode

The Bind interface

• Basic structure exported
by all nodes

• Nodes need not
implement all functions.

typedef struct fssBindIf {

 fssUint64 version;

 fssBindEventsIfFnPtr bindEventsIf;

 fssBindBusIfFnPtr bindBusIf;

 fssBindTimeSyncIfFnPtr bindTimeSyncIf;

 fssBindControlIfFnPtr bindControlIf;

 fssGetEventsIfHandleFnPtr getEventsIfHandle;

 fssGetBusIfFnPtr getBusIfHandle;

 fssGetTimeSyncIfHandleFnPtr getTimeSyncIfHandle;

 fssGetControlIfHandleFnPtr getControlIfHandle;

} fssBindIf;

Get and Bind
Configurator

Node A Node B

getHandle(NAME)

Bind(NAME)

Step 1: Request a handle from one node.
Step 2: Bind that handle to another node.

NB, to keep things simple, interfaces are unidirectional
B knows about A, but A may not know it has been bound to B

Both identified by a NAMES

p q r x y

h=getHandle(“A.q”)

Bind(h,“B.y”)

Simulation Event Interface

• NOTE: As with all interfaces, once established, this simply provides a
means by which one node can tell another node about an ‘event’

NOTHING MORE

• What does that event “mean” – Go to the Git repo!

• You want to send to all - you need a node to broadcast!

typedef void (*fssEventHandlerFnPtr)(fssEventsIfHandle eventsIfHandle, fssUint64 event);

Time Sync: From Time To Time

• Between any two simulators, simply exchange time windows

 {From Time, To Time}

• Always try to advance to the “from” time,

• Try not to advance beyond the “to” time

• When you arrive at the “to” time (or at any point), send a new
window to the other side.

• Can be used to handle FMI/FMU, Silkit, SystemC, EDA247, etc.

Sync algorithms : Just how you connect!

Steppers
Central controller

“Do step” – and wait for everybody
to complete

Watchers
Central time source

Everybody should do their best to
be in sync

Talkers
Each node broadcasts it’s time

(window) along with all
communication

Each node should do their best to
stay in sync with it’s neighbours

Implementing nodes as “talkers” allows them to operate within
a central controller (either time, or stepper based)

Simulation Event Interface

• NOTE: As with all interfaces, once established, this simply provides a
means by which one node can tell another node about an ‘event’

NOTHING MORE

• What does that event “mean” – Go to the Git repo!

• You want to send to all - you need a node to broadcast!

typedef void (*fssEventHandlerFnPtr)(fssEventsIfHandle eventsIfHandle, fssUint64 event);

Simulation Event Interface

• Simple “JSON” string

• For definitions – use Git Repo

typedef fssString (*fssDoCommandFnPtr)(fssControlIfHanlde controlIfHandle,

fssString cmd);

Data Interface? – More a sort of “meta bus”
Think: “Dynamic Protocol Buffers”

Node A Node C“Bus B”

I need the bus to transmit “Address”

I need the bus to transmit “Data"

Each node lists the items that it needs on the bus
Names (and semantics) : On the Git repo (!)
Then simple API to set/get items from the “bus” which organizes the transmission.

`bus’ container

• The abstraction of a ‘bus’ is basically a dynamic protobuf container.

• The interface is used to:
• Describe the ‘bus’ container.

• Add/extract data from the container.

• Indicate that the container should be processed by other nodes that have
access to it.
• This last could be an ‘event’ but it’s convenient to keep the API together

• Open question : Should we add time, by default, to this event?

Simulation Event Interface

typedef struct fssBusIf {

 fssUint64 version;

 fssBusIfGetItemsNumberFnPtr getNumber;

 fssBusIfGetNameFromIndexFnPtr getName;

 fssBusIfGetSizeFnPtr getSize;

 fssBusIfGetIndexFnPtr getIndex;

 fssBusIfAddItemFnPtr addItem;

 fssBusIfGetItemFnPtr getItem;

 fssBusIfSetItemFnPtr setItem;

 fssBusIfTransmitFnPtr transmit;

} fssBusIf;

Pub Sub?

• Each API can be wrapped into a Pub/Sub interface

• Prof of concept with Zenoh

• Each name is unique in the design

• Since the name binding is just a string – wildcards can be made to
work.

POC?

• Using Zenoh and/or SystemC

• Available as part of qbox

https://github.com/quic/qbox

	Slide 1: FSS : A proposal
	Slide 2: Federating Simulation
	Slide 3: FSS goal
	Slide 4: Interoperability interface needs to cover…
	Slide 5: FSS Interfaces : The proposal
	Slide 6: FSS Interfaces : A different proposal
	Slide 7: FSS Interfaces : The proposal
	Slide 8: An interface in 2 parts
	Slide 9: An interface in 2 parts
	Slide 10: General rules (Arbitrary, must be fixed)
	Slide 11: Topologies
	Slide 12: The Top Level Component Assembler is “Special” – just not very
	Slide 13: Alternative approach…
	Slide 14: Hierarchy of a federated simulation
	Slide 15: Nodes
	Slide 16: Top level configurator scheme
	Slide 17: Morphology of the interface Unashamedly borrowed from FMI/FMU
	Slide 18: In the beginning
	Slide 19: The Bind interface
	Slide 20: Get and Bind
	Slide 21: Simulation Event Interface
	Slide 22: Time Sync: From Time To Time
	Slide 23: Sync algorithms : Just how you connect!
	Slide 24: Simulation Event Interface
	Slide 25: Simulation Event Interface
	Slide 26: Data Interface? – More a sort of “meta bus”
	Slide 27: `bus’ container
	Slide 28: Simulation Event Interface
	Slide 29: Pub Sub?
	Slide 30: POC?

