EVOLUTION DAY

FSS : A proposal

Federating Simulation

 Systems of Systems.... To simulate real world (Digital twins?) we need
to combine many simulators together

e No one simulator does it all

* But each simulator has different interfaces, and attempts to get them
to play nicely seem to be use case specific

* We need a way to connect simulators together

FSS goal

Python

Sensor

Carla environment steerin
model

virtmscIm 88 QQVP Accelerator

kage
SN vsock/

SPI
NOC/Bus
FMI/FMU

Matlab Camera Model
Engine model

Silkit

status

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Interoperability interface needs to cover...
Sync

£ Config
{3 Status (Simulation state)

bl Data

Control/inspection

~%* Topology

FSS Interfaces : The prgposal

Set / Get Config
(name JSON value)

FSS Btanda

Notify simulation states

Sync Time Transport

Abstract e.g. Zenoh/Silkit/...

Interface
Transfer Data

Topology

Control/Inspection

(2025

DESIGN AND VERIEICATION ™

FSS Interfaces : A different proposal

Set / Get Config
(name JSON value)

| don’t think this works because:
| don’t think we should specify the transport.

Notify simulation states

Sync Time Transport

Abstract e.g. Zenoh/Silkit/...

Interface
Transfer Data

Topology

Control/Inspection

(2025

DESIGN AND VERIEICATION ™

NNNNNNNNNNNNNNNNNNNNNNN

FSS Interfaces : The prgposal

Set / Get Config
(name JSON value)

FSS Btanda

Notify simulation states

Sync Time Transport

Abstract e.g. Zenoh/Silkit/...

Interface
Transfer Data

Topology

Control/Inspection

(2025

DESIGN AND VERIEICATION ™

An interface in 2 parts

 SIMPLE C API e Semantics held on a shared
public repository

typedef fssBusIfHandle g

(*fssGetBusIfFnPtr) (fssBi
ndIFHandle bindIfHandle,

f ') .
ssString name Name |Meaning

Marks.foo.bus The special 33.5 bit foo bus
mark made

(2025

DESIGN AND VERIEICATION ™

SOCIAL CODING

This Photo by Unknown Author is licensed under CC BY-SA

https://framablog.org/2013/03/11/github-generation/
https://creativecommons.org/licenses/by-sa/3.0/

An interface in 2 palﬁvw: h

* We Don’t currently have a repo for this
* Maybe we’ll need more than “name” and

 SIMPLE C API “meaning”...

* Ideally | guess it would be nice if this was

machine readable?
ub &

SOCIAL CODING

typedef fssBusIfHandle
(*fssGetBusIfFnPtr) (fssBi

ndIFHandle bindIfHandle,

SSSPEERY PR Neme _________[Meaning

Marks.foo.bus The special 33.5 bit foo bus
mark made

/ 2

DESIGN AND VERIEICATION ™

/ I DVCON

CONFEREN CE AND EXHIBITION

This Photo by Unknown Author is licensed under CC BY-SA

https://framablog.org/2013/03/11/github-generation/
https://creativecommons.org/licenses/by-sa/3.0/

General rules (Arbitrary, must be fixed)

* All names to be pre-fixed with fully qualified hierarchical name

* All names to be pre-fixed with company name/abbreviation oh author
of the originator of the message

e All names to be postfixed with a message .type
* Hence:
* <company>@/foo/baa/harry/joe.sync

* All names searchable using regexp’s

Topologies

1,
Y -

* Config databases, you may have one, or many

e Simulation events, everybody may be interested, or only 2
participants...

* Etc...

* Interfaces can be connected in any way
e Central controllers, or distributed networks

The Top Level Component Assembler is
“Special” — just not very

“You got to start somewhere”...

* The top level component assembler owns the top level configuration database and will
use that to populate the sub-modules.

» Description of overall platform will be populated into the configuration database.

* Atop level assembler object will read the configuration database and build the
requested components

* Assembler will pre-populate much of the configuration database
e Assembler will provide “names” to nodes

Alternative approach...

Simulators could just ‘exist’ and find each other, and
connect.

Nice idea — but the reality is a PITA !

Start and stop each simulator independently? Yuk...
Surely half the reason for this standard is to have a
“standard” way of coordinating that!

— % 7..5),77 - /// ,
III;;'”/ Vi

Hierarchy of a federated simulation

Configurator
|
! ! ! ‘ !
Node — Nods Node
Any ‘transport’
T .
Configurator
| Node
! } |
| '
Node Node Node

Nodes

* Nodes may implement any/all of the interfaces.

e e.g. A Configurator implements the ‘config’
interface, and uses the ‘topology’ interfaces.

“—"Config interface

e Each node is connected to other nodes for
Configuration, Data, etc.

“bar” data interface

e Each node may expose many (hierarchical)
interfaces that can be “bound”

(2025

DESIGN AND VERIEICATION ™

Top level configurator scheme

The nature of the configuration database is up to the
configurator.

Connect to top Configurator must provide the standard interface to

level config the database and provide that to the components
database , ,

The configurator can then use the topology interface

to connect nodes.

Connect

topology Of course there may be other databases, and other

configurators within the system.

(2025

DESIGN AND VERIEICATION ™

DVGCON

CONFERENCE AND EXHIBITION

Morphology of the interface
Unashamedly borrowed from

FMI/FMU

In the beginning

Configurator

fssExport fssBindIFHandle

fssCreateNode (fssString nodeName,

fssConfigIfHandle configlfHandle); fssCreateNode

Node.dll

Provides a (unique) name
Provides a configuration API
Gets back a ‘Bind interface’

(2025

DESIGN AND VERIEICATION ™

The Bind interface

| * Basic structure exported
typedef struct fssBindIf {

fssUint64 version; by a” nOdeS
fssBindEventsIfFnPtr bindEventsIf;

fssBindBusIfFnPtr bindBusIf;

fssBindTimeSyncIfFnPtr bindTimeSyncIf;

fssBindControlIfFnPtr bindControlIf; ® NOdes need not
fssGetEventsIfHandleFnPtr getEventsIfHandle; . | t ||f t-
fssGetBusIfFnPtr getBusIfHandle; Imp ement a unctions.
fssGetTimeSyncIfHandleFnPtr getTimeSyncIfHandle;
fssGetControlIfHandleFnPtr getControlIfHandle;

} fssBindIf;

/ * s

DESIGN AND VERIEICATION ™

y - DVCON

CONFERENCE AND EXHIBITION

Get and Bind

Configurator
h=getHandle (“A.qg"”)

Bind (h, “B.y"”)

Step 1: Request a handle from one node.

Step 2: Bind that handle to another node. BOth identified by a NAMES

NB, to keep things simple, interfaces are unidirectional
B knows about A, but A may not know it has been bound to B

(2025

DESIGN AND VERIEICATION ™

DVCCON

CONFERENCE AND EXHIBITION

Simulation Event Interface

typedef void (*fssEventHandlerFnPtr) (fssEventsIfHandle eventsIfHandle, fssUint64 event);

* NOTE: As with all interfaces, once established, this simply provides a
means by which one node can tell another node about an ‘event’

NOTHING MORE
* What does that event “mean” — Go to the Git repo!

* You want to send to all - you need a node to broadcast!

Time Sync: From Time To Time

* Between any two simulators, simply exchange time windows |

{From Time, To Time}
* Always try to advance to the “from” time, - el i
* Try not to advance beyond the “to” time g s

* When you arrive at the “to” time (or at any point), send a ne ’9“% B
window to the other side. -

A
A
& N\

* Can be used to handle FMI/FMU, Silkit, SystemC, EDA247, etd

- (_\
[‘ £V DESIGN AND VERIEICATION ™
L =
-
——
gr
> -

/

/4

Yy

NNNNNNNNNNNNNNNNNNNNNNN

Sync algorithms : Just how you connect!

& 7

Steppers Watchers Talkers

Central controller Central time source Each node broadcasts it’s time
(window) along with all
communication

“Do step” — and wait for everybody Everybody should do their best to
to complete be in sync
Each node should do their best to
stay in sync with it’s neighbours

Implementing nodes as “talkers” allows them to operate within
a central controller (either time, or stepper based)

(2025

DESIGN AND VERIEICATION ™

Simulation Event Interface

typedef void (*fssEventHandlerFnPtr) (fssEventsIfHandle eventsIfHandle, fssUint64 event);

* NOTE: As with all interfaces, once established, this simply provides a
means by which one node can tell another node about an ‘event’

NOTHING MORE
* What does that event “mean” — Go to the Git repo!

* You want to send to all - you need a node to broadcast!

Simulation Event Interface

typedef fssString (*fssDoCommandFnPtr) (fssControlIfHanlde controlIfHandle,

fssString cmd) ;

* Simple “JSON” string
* For definitions — use Git Repo

(2025

DESIGN AND VERIEICATION ™

Data Interface? — More a sort of “meta bus”

Think: “Dynamic Protocol Buffers”

| need the bus to transmit “Address”

| need the bus to transmit “Data"

Each node lists the items that it needs on the bus
Names (and semantics) : On the Git repo (!)
Then simple API to set/get items from the “bus” which organizes the transmission.

(2025

DESIGN AND VERIEICATION ™

‘bus’ container

* The abstraction of a ‘bus’ is basically a dynamic protobuf container.

 The interface is used to:
e Describe the ‘bus’ container.
* Add/extract data from the container.

* Indicate that the container should be processed by other nodes that have
access to it.
* This last could be an ‘event’ but it’s convenient to keep the API together
* Open question : Should we add time, by default, to this event?

(2025

DESIGN AND VERIEICATION ™

Simulation Event Interface

typedef struct fssBusIf {
fssUint64 version;
fssBusIfGetItemsNumberFnPtr getNumber;
fssBusIfGetNameFromIndexFnPtr getName;
fssBusIfGetSizeFnPtr getSize;
fssBusIfGetIndexFnPtr getlIndex;
fssBusIfAddItemFnPtr addItem;

fssBusIfGetItemFnPtr getlItem;

fssBusIfSetItemFnPtr setltem;

fssBusIfTransmitFnPtr transmit;
} fssBusIf;

(2025

DESIGN AND VERIEICATION ™

DVGCOIN

CONFERENCE AND EXHIBITION

Pub Sub?

* Each API can be wrapped into a Pub/Sub interface
* Prof of concept with Zenoh
* Each name is unique in the design

e Since the name binding is just a string — wildcards can be made to
work.

POC?

e Using Zenoh and/or SystemC
 Available as part of gbox

https://github.com/quic/gbox

	Slide 1: FSS : A proposal
	Slide 2: Federating Simulation
	Slide 3: FSS goal
	Slide 4: Interoperability interface needs to cover…
	Slide 5: FSS Interfaces : The proposal
	Slide 6: FSS Interfaces : A different proposal
	Slide 7: FSS Interfaces : The proposal
	Slide 8: An interface in 2 parts
	Slide 9: An interface in 2 parts
	Slide 10: General rules (Arbitrary, must be fixed)
	Slide 11: Topologies
	Slide 12: The Top Level Component Assembler is “Special” – just not very
	Slide 13: Alternative approach…
	Slide 14: Hierarchy of a federated simulation
	Slide 15: Nodes
	Slide 16: Top level configurator scheme
	Slide 17: Morphology of the interface Unashamedly borrowed from FMI/FMU
	Slide 18: In the beginning
	Slide 19: The Bind interface
	Slide 20: Get and Bind
	Slide 21: Simulation Event Interface
	Slide 22: Time Sync: From Time To Time
	Slide 23: Sync algorithms : Just how you connect!
	Slide 24: Simulation Event Interface
	Slide 25: Simulation Event Interface
	Slide 26: Data Interface? – More a sort of “meta bus”
	Slide 27: `bus’ container
	Slide 28: Simulation Event Interface
	Slide 29: Pub Sub?
	Slide 30: POC?

